Journal of Applied Nonlinear Dynamics
Two Kinds of Multiple Wave Solutions for the Potential YTSF Equation and a Potential YTSF-Type Equation
Journal of Applied Nonlinear Dynamics 1(1) (2012) 51--58 | DOI:10.5890/JAND.2012.01.001
Abdul-Majid Wazwaz
Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA
Download Full Text PDF
Abstract
n this work, we study the (3+1)-dimensional YTSF equation and a YTSF-type equation. We derive two kinds of multiple wave solutions for each equation. The simplified form of the direct method will be used to conduct the analysis.
References
-
[1]  | Wazwaz, A.M. (2008),Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, JimboMiwa and YTSF equations, Appl. Math. Comput., 203, 592-597. |
-
[2]  | Wazwaz,A.M. (2008), New solutions of distinct physical structures to high-dimensional nonlinear evolution equations, Appl. Math. Comput., 196, 363-370. |
-
[3]  | Kobayashi, T. and K. Toda (2006), The PainlevĂ© test and reducibility to the canonical forms for higherdimensional soliton equations with variable-coefficients, Symm. Integr. and Geom.:Methods and Applications, 2, 1-10. |
-
[4]  | Kadomtsev, B.B. and Petviashvili, V.I. (1970), On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15, 539-541. |
-
[5]  | Yu, S.J., Toda, K., Sasa, N., and Fukuyama, T. (1998), N soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3+1) dimensions, J. Phys. A: Math. Gen., 31, 3337-3347. |
-
[6]  | Tang, X.Y., and Liang,Z.F. (2006), Variable separtion solutions for the (3+1)-dimensional Jimbo-Miwa equation, Phys. Lett. A, 351, 398-402. |
-
[7]  | Hu, X.-B., Wang, D.-L., Tam, H.-W., and Xue,W.-M. (1999). Soliton solutions to the Jimbo-Miwa equation and the Fordy-Gibbons-Jimbo-Miwa equation, Phys. Lett. A, 262, 310-320. |
-
[8]  | Liu, X.-Q., and Jiang, S. (2004), New solutions of the (3+1)-dimensional Jimbo-Miwa equation, Appl. Math. Comput., 158, 177-184. |
-
[9]  | Wang, D., Sun, W., Kong, C., and Zhang, H. ( 2007), New extended rational expansion method and exact solutions of Boussinesq equation and Jimbo-Miwa equations, Appl. Math. Comput., 189, 878-886. |
-
[10]  | Kichenassamy, S. and Olver, P. (1992), Existence and nonexistence of solitary wave solutions to higher-order model evolution equations, SIAM J. Math. Anal., 23(5), 1141-1166. |
-
[11]  | HeremanW. and Nuseir, A. (1997), Symbolic methods to construct exact solutions of nonlinear partial differential equations, Mathematics and Computers in Simulation, 43, 13-27. |
-
[12]  | Wazwaz,A.M. (2009), Partial Differential Equations and Solitary Waves Theorem, Springer and HEP, Berlin- Beijing. |
-
[13]  | Wazwaz, A.M. (2007),New solitons and kinks solutions to the Sharma-Tasso-Olver equation, Appl. Math. Comput., 188, 1205-1213. |
-
[14]  | Wazwaz, A.M. (2007), New solitary wave and periodic wave solutions to the (2+1)-dimensional Nizhnik- Novikov-Veselov system, Appl. Math. . Comput., 187, 1584-1591. |