Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Hamiltonian Formalism for Optimal Control of Nonlinear Loaded Integro-PDE Systems

Discontinuity, Nonlinearity, and Complexity 14(3) (2025) 559--567 | DOI:10.5890/DNC.2025.09.009

S. A. Belbas

Independent consultant https://www.researchgate.net/profile/S-Belbas

Download Full Text PDF

 

Abstract

We formulate nonlinear nonlocal integro-PDE with memory, biloaded (boundary integrals load the ambient space, and the ambient space loads the boundary), and the associated optimal control problems. We derive part of the necessary conditions for optimality in the form of Hamilton-Euler-Lagrange loaded integro-PDEs. In the process, we introduce an agglomeration of new differential operators. Our results have relevance to optimal amelioration of flooded areas, remediation of sites of contaminated groundwater, and active control methods for optimally extinguishing forest fires.

References

  1. [1]  Barenblatt, G. I. (2014), Flow, Deformation and Fracture, Cambridge University Press: Cambridge.
  2. [2]  Barenblatt, G.I., Zheltov, Yu.P., and Kochina, I.N. (1960), Basic concepts in the theory of seepage of homogeneous fluids in fissured rocks (strata), Prikladnaya Matematika i Mekhanika, 14(5), 852-864 (in Russian).
  3. [3]  Belbas, S.A. and Bulka, Yu. (2011), Numerical solution of multiple nonlinear Volterra integral equations, Applied Mathematics and Computation, 217(9), 4791-4804.
  4. [4]  Bedient, P.B., Huber, W.C., and Vieux, B.E. (2013), Hydrology and floodplain analysis, Pearson: London.
  5. [5]  Sanders, B.F., Schubert, H.E., and Gallegos, H.A. (2008), Integral formulation of shallow-water equations with anisotropic porosity for urban flood modelling, Journal of Hydrology, 362, 19-38.
  6. [6]  Garc{i}a-Navarros, P., Murillo, J., Fern{a}ndez-Pato, J., Echeverribar, I., and Morales-Hern{a}ndez, M. (2019), The shallow water equations and their application to realistic cases, Environmental Fluid Mechanics, 19, 1235-1252.
  7. [7]  Dafermos, C.M. and Pokr{o}ny, M. (editors) (2009), Handbook of Differential Equations, Evolutionary Equations, 5, North-Holand: Amsterdam.
  8. [8]  Tousma, G., Bear, J., Haimes, Y.Y., and Walter, F. (editors) (1989), Groundwater Contamination: Use of Models in Decision Making, Springer-Netherlands: Dordrecht.
  9. [9]  Scheibe, T.D. and Mays, D.C. (editors) (2018), Groundwater Contamination and Remediation, MDPI: Basel.
  10. [10]  Rothermel, R.C. (1972), A Mathematical Model for Predicting Fire Spread in Wildland Fires, Intermountain Forest and Range Experiment Station: Ogden, Utah, USA.
  11. [11]  Agranat, V. and Perminov, V. (2020), Mathematical modelling of wildland fire initiation and spread, Environmental Modelling and Software, 125, 2-7.
  12. [12]  Lur'e, K.A. (1975), Optimal control in problems of Mathematical Physics, Nauka: Moscow (in Russian).
  13. [13]  Marchuk, G.I. (1995), Adjoint Equations and Analysis of Complex Systems, Springer-Netherlands: Dordrecht.
  14. [14]  Marchuk, G.I., Agoshkov, V.I., and Shutayev, V.P. (1996), Adjoint Equations and Perturbation Algorithms in Nonlinear Problems, CRC Press: Boca Raton.
  15. [15]  Kharitonov, V.V. and Sorokin, O.S. (1974), Certain nonlinear problems of heat conduction, Nauka i Tekhnika: Minsk (in Russian).
  16. [16]  Kuvyrkin, G., Savelyeva, I., and Kurshinmikova, D. (2021), Nonlocal thermodynamics: two-dimensional mathematical model of thermal conductivity, ICCHMT Conference, 4 pp.
  17. [17]  Nakhushev, A.M. (2012), Loaded Equations and Their Applications, Nauka: Moscow (in Russian).
  18. [18]  Dzhenaliev, M.T. and Ramazanov, M.I. (2010), Loaded Equations as Perturbations of Differential Equations, Fylym: Almaty (in Russian).
  19. [19]  Meirmanov, A. (2014), Mathematical Models for Poroelastic Flows, Atlantis Press: Paris.
  20. [20]  Belbas, S.A. and Schmidt, W.H. (2021), Some solvable cases of optimal control for Volterra integral systems, Discussiones Mathematicae, Differential Inclusions Control Optimization, 41(1), 39-60.
  21. [21]  Schmidt, W.H. (1980), Notwendige Optimalit\"{a}tsbedingungen f\"{u}r Prozesse mit zeitvariablen Integralgleichungen in Banachr\"{a}umen, Zeitschrift f\"{ur angewandte Mathematik und Mechanik}, 60, 595-608.
  22. [22]  Maillet, D. (2019), A review of the models using the Cattaneo and Vernotte hyperbolic heat equation and their experimental validation, International Journal of Thermal Sciences, 139, 424-432.
  23. [23]  Herrmann, L. (2012), Hyperbolic diffusion equations, American Institute of Physics Conference Proceedings, 1504, 1337-1340.