Discontinuity, Nonlinearity, and Complexity
Ferroptosis as a Biological Phase Transition III: Ephitelial-Mesenchymal Transition
Discontinuity, Nonlinearity, and Complexity 14(3) (2025) 549--558 | DOI:10.5890/DNC.2025.09.008
H. Suárez-Ogando$^{1}$, A. Guerra$^{1}$, R. Mansilla$^{2,3}$, J.M. Nieto-Villar$^{1\dag}$
$^{1}$ Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems of M.V.
Lomonosov Chair, Faculty of Chemistry, University of Havana, Cuba
$^{2}$ Center for Interdisciplinary Research in Sciences and the Humanities (CEIICH), National Autonomous
University of Mexico (UNAM), México City, 04510, México
$^{3}$ Peninsular Center for Humanities and Social Sciences (CEPHCIS), National Autonomous University of
Mexico (UNAM), Merida 97150, Mexico.
Download Full Text PDF
Abstract
In the present work, a model is proposed where the ferroptosis process is related to the stages of avascular and vascular tumor growth, including the process of epithelial-mesenchymal transition. It was found that the ferroptosis process induces cell death more effectively in cells with a mesenchymal phenotype. Furthermore, it was observed that for certain compositions of epithelial and mesenchymal cells the tumor growth system exhibits less complexity. From the evaluation of the entropy production rate, it was identified that an increase in the concentration of oxidized lipid peroxide species generates an increase in the robustness of the ferroptosis process, while decreasing the robustness of the epithelial-mesenchymal transition mechanism.
References
-
[1]  | Chhikara, B.S. and Parang, K. (2023), Global cancer statistics 2022: the trends projection analysis, Chemical Biology Letters, 10(1), 451-451.
|
-
[2]  | De Las Rivas, J., Brozovic, A., Izraely, S., Casas-Pais, A., Witz, I. P., and Figueroa, A. (2021), Cancer drug resistance induced by EMT: novel therapeutic strategies, Archives of Toxicology, 95(7), 2279-2297.
|
-
[3]  | Izquierdo-Kulich, E., Rebelo, I., Tejera, E., and Nieto-Villar, J.M. (2013), Phase transition in tumor growth: I avascular development, Physica A: Statistical Mechanics and its Applications, 392(24), 6616-6623.
|
-
[4]  | Deisboeck, T.S., Berens, M.E., Kansal, A.R., Torquato, S., Stemmer-Rachamimov, A.O., and Chiocca, E.A. (2001), Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumour spheroid model, Cell Proliferation, 34(2), 115-134.
|
-
[5]  | Kitano, H. (2007), Towards a theory of biological robustness, Molecular Systems Biology, 3(1), 137.
|
-
[6]  | Kitano, H. (2004), Cancer as a robust system: implications for anticancer therapy, Nature Reviews Cancer, 4(3), 227-235.
|
-
[7]  | Izquierdo-Kulich, E. and Nieto-Villar, J.M. (2013), Morphogenesis and complexity of the tumor patterns, In Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics (pp. 657-691). Berlin, Heidelberg: Springer Berlin Heidelberg.
|
-
[8]  | Llanos-Pérez, J.A., Betancourt-Mar, J.A., Cocho, G., Mansilla, R., and Nieto-Villar, J.M. (2016), Phase transitions in tumor growth: III vascular and metastasis behavior, Physica A: Statistical Mechanics and its Applications, 462, 560-568.
|
-
[9]  | Montero S., Martin R., Mansilla R., Cocho G., and Nieto-Villar J.M. (2018), Parameters estimation in phase-space landscape reconstruction of cell fate: a systems biology approach, Syst Biol (Stevenage), 1702, 125-170. doi:10.1007/978-1-4939-7456-6-8.
|
-
[10]  | Hanahan, D., and Weinberg, R.A. (2011), Hallmarks of cancer: the next generation, Cell, 144(5), 646-674.
|
-
[11]  | Aokage, K., Ishii, G., Ohtaki, Y., Yamaguchi, Y., Hishida, T., Yoshida, J., Nishimura, M., Nagai, K., and Ochiai, A. (2011), Dynamic molecular changes associated with epithelial-mesenchymal transition and subsequent mesenchymal-epithelial transition in the early phase of metastatic tumor formation, International Journal of Cancer, 128(7), 1585-1595.
|
-
[12]  | Zhao, L., Wang, W., Xu, L., Yi, T., Zhao, X., Wei, Y., Vermeulen, L., Goel, A., Zhou, S., and Wang, X. (2019), Integrative network biology analysis identifies miR-508-3p as the determinant for the mesenchymal identity and a strong prognostic biomarker of ovarian cancer, Oncogene, 38(13), 2305-2319.
|
-
[13]  | Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009), Epithelial-mesenchymal transitions in development and disease, Cell, 139(5), 871-890.
|
-
[14]  | Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., Van Keymeulen, A., Brown, D., Moers, V., Lemaire, S. and De Clercq, S. (2018), Identification of the tumour transition states occurring during EMT, Nature, 556(7702), 463-468.
|
-
[15]  | Chen, H.T., Liu, H., Mao, M.J., Tan, Y., Mo, X.Q., Meng, X.J., Cao, M.T., Zhong, C.Y., Liu, Y., Shan, H., and Jiang, G.M. (2019), Crosstalk between autophagy and epithelial-mesenchymal transition and its application in cancer therapy, Molecular Cancer, 18(1), 1-19.
|
-
[16]  | Conrad, M. and Pratt, D.A. (2019), The chemical basis of ferroptosis, Nature Chemical Biology, 15(12), 1137-1147.
|
-
[17]  | Agmon, E., Solon, J., Bassereau, P., and Stockwell, B.R. (2018), Modeling the effects of lipid peroxidation during ferroptosis on membrane properties, Scientific Reports, 8(1), 5155.
|
-
[18]  | Lee, J. and Roh, J.L. (2023), Epithelial-mesenchymal plasticity: implications for ferroptosis vulnerability and cancer therapy, Critical Reviews in Oncology/Hematology, 185, 103964.
|
-
[19]  | Nieto-Villar J.M. and Mansilla R. (2021), Ferroptosis as a biological phase transition I: avascular and vascular tumor growth, European Journal of Biomedical and Pharmaceutical Sciences, 8(12), 63-70.
|
-
[20]  | Ren, Y., Mao, X., Xu, H., Dang, Q., Weng, S., Zhang, Y., and Zhang, G. (2023), Ferroptosis and EMT: key targets for combating cancer progression and therapy resistance, Cellular and Molecular Life Sciences, 80(9), 263.
|
-
[21]  | Wang, S., Liao, H., Li, F., and Ling, D. (2019), A mini-review and perspective on ferroptosis-inducing strategies in cancer therapy, Chinese Chemical Letters, 30(4), 847-852.
|
-
[22]  | Lei, G., Zhang, Y., Koppula, P., Liu, X., Zhang, J., Lin, S.H., and Gan, B. (2020), The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression, Cell Research, 30(2), 146-162.
|
-
[23]  | Brú, A., Albertos, S., Subiza, J.L., García-Asenjo, J.L., and Brú, I. (2003), The universal dynamics of tumor growth, Biophysical Journal, 85(5), 2948-2961.
|
-
[24]  | Cheng, Z. and Li, Y. (2007), What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update, Chemical Reviews, 107(3), 748-766.
|
-
[25]  | Bebber, C.M., Müller, F., Prieto Clemente, L., Weber, J., and von Karstedt, S. (2020), Ferroptosis in cancer cell biology, Cancers, 12(1), 164.
|
-
[26]  | Spiteller, G. and Afzal, M. (2014), The action of peroxyl radicals: powerful deleterious reagents explain why neither cholesterol nor saturated fatty acids cause atherogenesis and age-related diseases, Chemistry–A European Journal, 20(46), 14928-14945.
|
-
[27]  | Dreger, H., Westphal, K., Weller, A., Baumann, G., Stangl, V., Meiners, S., and Stangl, K. (2009), Nrf2-dependent upregulation of antioxidative enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection, Cardiovascular Research, 83(2), 354-361.
|
-
[28]  | Araujo, R.P. and McElwain, D.S. (2004), A history of the study of solid tumour growth: the contribution of mathematical modelling, Bulletin of Mathematical Biology, 66(5), 1039-1091.
|
-
[29]  | Bellomo, N., Li, N.K., and Maini, P.K. (2008), On the foundations of cancer modelling: selected topics speculations and perspectives, Mathematical Models and Methods in Applied Sciences, 18(4), 593-646.
|
-
[30]  | Andronov, A.A. and Khaikin, S.E. (1949),
Theory of Oscillations, Princeton University Press.
|
-
[31]  | Anishchenko, V.S., Vadivasova, T.E., Okrokvertskhov, G.A., and Strelkova, G. (2003), Correlation analysis of dynamical chaos, Physica A: Statistical Mechanics and its Applications, 325(1-2), 199-212.
|
-
[32]  | Kuznetsov, Y.A., Kuznetsov, I.A., and Kuznetsov, Y. (1998), Elements of applied bifurcation theory (Vol. 112, pp. xx+591), New York: Springer.
|
-
[33]  | Varma, A., Morbidelli, M., and Wu H. (2005), Parametric Sensitivity in Chemical Systems (ed.), Cambridge University Press.
|
-
[34]  | Frederickson, P., Kaplan, J.L., Yorke, E.D., and Yorke, J.A. (1983), The Liapunov dimension of strange attractors, Journal of Differential Equations, 49(2), 185-207.
|
-
[35]  | Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus N., and Kummer U. (2006), COPASI—a complex pathway simulator, Bioinformatics, 22(24), 3067-3074.
|
-
[36]  | Chua L.O., Shilnikov L.P., Shilnikov A.L., and Turaev D.V. (2001), Methods of Qualitative Theory in Nonlinear Dynamics (Part II),
5, World Scientific.
|
-
[37]  | Betancourt-Mar, J. and Nieto-Villar, J. (2007), Theoretical models for chronotherapy: periodic perturbations in funnel chaos type, Mathematical Biosciences and Engineering, 4(2), 177-186.
|
-
[38]  | Viswanathan, V.S., Ryan, M.J., Dhruv, H.D., Gill, S., Eichhoff, O.M., Seashore-Ludlow, B., and Schreiber, S.L. (2017), Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway, Nature, 547(7664), 453-457.
|
-
[39]  | Vucetic, M., Daher, B., Cassim, S., Meira, W., and Pouyssegur, J. (2020), Together we stand apart we fall: how cell-to-cell contact/interplay provides resistance to ferroptosis, Cell Death $\&$ Disease, 11(9), 789.
|
-
[40]  | Posch, H.A. and Hoover, W.G. (1988), Lyapunov instability of dense Lennard-Jones fluids, Physical Review A, 38(1), 473-483.
|
-
[41]  | Gaspard, P. (2004), Time-reversed dynamical entropy and irreversibility in Markovian random processes, Journal of Statistical Physics, 117, 599-615.
|
-
[42]  | Martyushev, L.M. and Seleznev, V.D. (2006), Maximum entropy production principle in physics, chemistry and biology, Physics Reports, 426(1), 1-45.
|
-
[43]  | Rieumont-Briones, J., Nieto-Villar, J.M., and García, J.M. (1997), The rate of entropy production as a mean to determine the most important reaction steps in Belousov-Zhabotinsky reaction, Anales de Quimica (1990), 93, 141-152.
|
-
[44]  | Nieto-Villar, S.J., Rieumont, J., Quintana, R., and Miquel, J. (2003), Thermodynamic approach to the aging process of biological systems, Revista CENIC Ciencias Químicas, 34(3), 149-157.
|
-
[45]  | Izquierdo-Kulich, E., Alonso-Becerra, E., and Nieto-Villar, J.M. (2011), Entropy production rate for avascular tumor growth, Journal of Modern Physics, 2(6), 615-620.
|