Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


On Nonlinear Generalized Caputo Fractional Implicit Volterra-Fredholm Model

Discontinuity, Nonlinearity, and Complexity 14(2) (2025) 439--450 | DOI:10.5890/DNC.2025.06.015

Saif Aldeen M. Jameel$^1$, Ahmed A. Hamoud$^2$

$^1$ Department of Statistics Techniques, Middle Technical University, Institute of Administration Rusafa, %Baghdad-10045, Iraq

$^2$ Department of Mathematics, Taiz University, Taiz P.O. Box 6803, Yemen

Download Full Text PDF

 

Abstract

n this paper, we prove some new existence and uniqueness results of solutions for nonlinear fractional implicit integro-differential equations of Hadamard-Caputo type with fractional boundary conditions. The reasoning is inspired by diverse classical fixed point theory, such as the Schauder and Banach fixed point theorems. The theoretical findings are illustrated through an example.

References

  1. [1]  Agarwal, R.P., Benchohra, M., and Slimani, B.A. (2008), Existence results for differential equations with fractional order and impulses, Memoirs on Differential Equations and Mathematical Physics, 44, 1-21.
  2. [2]  Agarwal, R.P., Meehan, M., and O'Regan, D. (2001), Fixed Point Theory and Applications, 141, Cambridge University Press, Cambridge, UK.
  3. [3]  Arioua, Y., Basti, B., and Benhamidouche, N. (2019), Initial value system for nonlinear implicit fractional differential equations with Katugampola derivative, Applied Mathematics E-Notes, 19, 397-412.
  4. [4]  Alesemi, M., Iqbal, N., and Hamoud, A.A. (2022), The analysis of fractional-order proportional delay physical models via a novel transform, Complexity, 2022, 1-12.
  5. [5]  Bahuguna, D. and Dabas, J. (2008), Existence and uniqueness of a solution to a partial integro-differential equation by the method of lines, Electronic Journal of Qualitative Theory of Differential Equations, 4, 1-12.
  6. [6]  Hamoud, A.A., Chahra, K., Abdelouaheb, A., Homan, E., Atul, K., and Laith, A. (2026), On Hadamard-Caputo implicit fractional integro-differential equations with boundary fractional conditions, Kragujevac Journal of Mathematics, 50(3), 491-504.
  7. [7]  Atshan, S.M. and Hamoud, A.A. (2024), Qualitative analysis of ABR-fractional Volterra-Fredholm system, Nonlinear Functional Analysis and Applications, 29(1), 113-130.
  8. [8]  Benavides, T.D. (1978), An existence theorem for implicit differential equations in a Banach space, Annali di Matematica Pura ed Applicata, 4, 119-130.
  9. [9]  Jameel, S.A.M., Rahman, S.A., and Hamoud, A.A. (2024), Analysis of Hilfer fractional Volterra-Fredholm system, Nonlinear Functional Analysis and Applications, 29(1), 259-273.
  10. [10]  Dawood, L., Hamoud, A., and Mohammed, N. (2020), Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations, Journal of Mathematics and Computer Science, 21(2), 158-163.
  11. [11]  Hamoud, A. and Ghadle, K. (2018), Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-differential equation of the second kind, Tamkang Journal of Mathematics, 49(4), 301-315.
  12. [12]  Hamoud, A., Ghadle, K., and Atshan, S. (2019), The approximate solutions of fractional integro-differential equations by using modified Adomian decomposition method, Khayyam Journal of Mathematics, 5(1), 21-39.
  13. [13]  Benchohra, M. and Lazreg, J.E. (2013), Nonlinear fractional implicit differential equations, Communications in Applied Analysis, 17(3-4), 471-482.
  14. [14]  Benchohra, M. and Lazreg, J.E. (2014), Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions, Romanian Journal of Mathematics and Computer Science, 4(1), 60-72.
  15. [15]  Jarad, F., Baleanu, D., and Abdeljawad, T. (2012), Caputo-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 2012(1), 1-8.
  16. [16]  Hamoud, A. and Ghadle, K. (2019), Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, Journal of Applied and Computational Mechanics, 5(1), 58-69.
  17. [17]  Butzer, P.L., Kilbas, A.A., and Trujillo, J.J. (2002), Composition of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269(2), 387-400.
  18. [18]  Derdar, N. (2022), Nonlinear implicit Hadamard-Caputo fractional differential equation with fractional boundary conditions, Jordan Journal of Mathematics and Statistics (JJMS), 15(4B), 999-1014. DOI: https://doi.org/10.47013/15.4.14
  19. [19]  Emmanuele, G. and Ricceri, B. (1981), On the existence of solutions of ordinary differential equations in implicit form in Banach spaces, Annals of Pure and Applied Mathematics, 129, 367-382.
  20. [20]  Hamoud, A.A. (2021), Uniqueness and stability results for Caputo Fractional Volterra-Fredholm integro-differential equations, Journal of Siberian Federal University. Mathematics $\&$ Physics, 14(3), 313-325. DOI: 10.17516/1997-1397-2021-14-3-313-325.
  21. [21]  Hamoud, A.A. and Ghadle, K.P. (2018), The Approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques, Issues of Analysis, 25(1), 41-58.
  22. [22]  Hamoud, A.A., Bani Issa, M.SH., and Ghadle, K.P. (2018), Existence and uniqueness results for nonlinear Volterra-Fredholm integro-differential equations, Nonlinear Functional Analysis and Applications, 23(4), 797-805.
  23. [23]  Hokkanen, V.M. (1994), Continuous dependence for an implicit nonlinear equation, Journal of Differential Equations, 110, 67-85.
  24. [24]  Hamoud, A.A., Jameel, S.A.M., Mohammed, N.M., Emadifar, H., Parvaneh, F., and Khademi, M. (2023), On controllability for fractional Volterra-Fredholm system, Nonlinear Functional Analysis and Applications, 28(2), 407-420.
  25. [25]  Jameel, S.A.M. (2023), On the existence and stability of Caputo Volterra-Fredholm systems, Journal of Mathematics and Computer Science, 30, 322-331.
  26. [26]  Kilbas, A.A. (2001), Hadamard-type fractional calculus, Journal of the Korean Mathematical Society, 38(6), 1191-1204.
  27. [27]  Karthikeyan, P. and Arul, R. (2021), Integral boundary value problems for implicit fractional differential equations involving Hadamard and Hadamard-Caputo fractional derivatives, Kragujevac Journal of Mathematics, 45(3), 331-341.
  28. [28]  Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam.
  29. [29]  Kucche, K.D., Nieto, J.J., and Venktesh, V. (2020), Theory of nonlinear implicit fractional differential equations, Differential Equations and Dynamical Systems, 28(1), 1-17.
  30. [30]  Lakshmikantham, V. and Rao, M. (1995), Theory of Integro-Differential Equations, Gordon \& Breach, London.
  31. [31]  Nieto, J.J., Ouahab, A., and Venktesh, V. (2015), Implicit fractional differential equations via the Liouville-Caputo derivative, Mathematics, 3(2), 398-411.
  32. [32]  Podlubny, I. (1999), Fractional Differential Equations, Academic Press, New York, USA.
  33. [33]  Unhaley, S. and Kendre, S. (2019), On existence and uniqueness results for iterative fractional integro-differential equation with deviating arguments, Applied Mathematics E-Notes, 19, 1-16.
  34. [34]  Vivek, D., Elsayed, E., and Kanagarajan, K. (2019), Theory of fractional implicit differential equations with complex order, Journal of Universal Mathematics, 2(2), 154-165.
  35. [35]  Vivek, D., Kanagarajan, K., and Elsayed, E.M. (2018), Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterranean Journal of Mathematics, 15(1), 1-14.