Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Some New Results for a Class of Volterra-Fredholm fractional Integrol-Differential Equations under Integral Boundary Value Problems

Discontinuity, Nonlinearity, and Complexity 14(2) (2025) 293--301 | DOI:10.5890/DNC.2025.06.004

Abdulrahman A. Sharif$^{1,2}$, Maha M. Hamood$^{2,3}$, Kirtiwant P. Ghadle$^2$

$^{1}$ Department of Mathematics, Hodeidah University, AL-Hudaydah-Yemen

$^{2}$ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

$^{3}$ Department of Mathematics, Taiz University, Taiz-Yemen

Download Full Text PDF

 

Abstract

In this study, we prove the positive solutions to a fractional Volterra-Fredholm integro-differential equation existence and uniqueness. Along with integral boundary conditions, this equation uses Caputo-Hadamard fractional derivatives. Our method of proof makes use of the Schauder fixed point theorem, the Banach contraction principle, upper and lower solution notions, and these concepts. We present an example to demonstrate the utility of our theoretical conclusions.

References

  1. [1]  Mainardi, F. (2010), Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London.
  2. [2]  Sharif A., Hamoud, A., and Ghadle, K. (2023), On existence and uniqueness of solutions to a class of fractional Volterra-Fredholm initial value problems, Discontinuity, Nonlinearity, and Complexity, 12(4), 905-916.
  3. [3]  Tellab, B., Boulfoul, A., and Ghezal, A.(2023), Existence and uniqueness results for nonlocal problem with fractional integro-differential equation in Banach Space, Thai Journal of Mathematics, 21(1), 53-65.
  4. [4]  Hamoud, A. and Sharif, A. (2023), A.Existence, uniqueness and stability results for nonlinear neutral fractional Volterra-Fredholm integro-differential equations, Discontinuity, Nonlinearity, and Complexity, 12(2), 381-398.
  5. [5]  Lachouri, A. and Gouri, N. (2022), Existence and uniqueness of positive solutions for a class of fractional integro-differential equations, Palestine Journal of Mathematics, 11(3), 167–174
  6. [6]  Ardjouni, A. and Djoudi, A. (2020), Existence and uniqueness of positive solutions for first-order nonlinear Liouville-Caputo fractional differential equations, Sao Paulo Journal of Mathematical Sciences, 14, 381–390.
  7. [7]  Wang, C., Gao, L., and Dou, Q. (2014), Existence and uniqueness of positive solution for a nonlinear multi-order fractional differential equations, British Journal of Mathematics $\&$ Computer Science, 4(15), 2137.
  8. [8]  Lachouri, A., Ardjouni, A., and Djoudi, A. (2020), Positive solutions of a fractional integro-differential equation with integral boundary conditions, Communications in Optimization Theory, 2020, 1–9.
  9. [9]  Klafter, J., Lim, S.C., and Metzler, R. (2011), Fractional Dynamics in Physics Recent Advances, World Scientific, Singapore.
  10. [10]  Tenreiro-Machado, J.A., Kiryakova, V., and Mainardi, F. (2011), Recent history of fractional calculus, Communications in Nonlinear Science and Numerical Simulation, 16, 1140-1153.
  11. [11]  Kilbas, A. (2001), Hadamard-type fractional calculus, Journal of the Korean Mathematical Society, 38, 1191-1204.
  12. [12]  Wang, C., Zhang, H., and Wang, S. (2012), Positive solution of a nonlinear fractional differential equationinvolving Caputo derivative, Discrete Dynamics in Nature and Society, 2012(1), 425-408.
  13. [13]  Wang, J., Zhou, Y., and Medved, M. (2013), Existence and stability of fractional differential equations with Hadamard derivative, Topological Methods in Nonlinear Analysis, 41(1), 113-133.
  14. [14]  Ardjouni, A. and Djoudi, A. (2019), Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open Journal of Mathematical Analysis, 3(1), 62-69.
  15. [15]  Das, S. (2011), Functional Fractional Calculus, Springer-Verlag, Berlin, Heidelberg.
  16. [16]  Butzer, P., Kilbas, A., and Trujillo, J. (2002), Compositions of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269, 387-400.
  17. [17]  Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and applications of fractional differential equations, Elsevier Science B. V., Amsterdam.
  18. [18]  Das, S. (2008), Functional Fractional Calculus for System Identification and Controls, Springer-Verlag, Berlin, Heidelberg.
  19. [19]  Lakshmikantham, V. and Vatsala, A.S. (2008), Basic theory of fractional differential equations, Nonlinear Analysis,69, 2677–2682 .
  20. [20]  Dawood, L., Sharif, A., and Hamood, A. (2020), Solving higher-order integro-differential equations by VIM and MHPM, International Journal of Applied Mathematics, 33(2), 253-264.
  21. [21]  Ardjouni, A. (2021), Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional differential equation, Proyecciones Journal of Mathematics, 40(1), 139-152.
  22. [22]  Lachouri, A., Ardjouni, A., and Djoudi, A. (2020), Existence and Ulam stability results for nonlinear hybrid implicit Caputo fractional differential equations, Mathematica Moravica, 24(1), 109–122.
  23. [23]  Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York.
  24. [24]  Podlubny, I. (1999), Fractional Differential Equations, Academic Press, San Diego.
  25. [25]  Sharif, A.A., Hamood, M.M., and Ghadle, K.P. (2022), Existence and uniqueness theorems for integro-differential equations with CAB-fractional derivative, Acta Universitatis Apuleius, 72, 59-78.
  26. [26]  Sharif, A. and Hamoud, A. (2022), On $\psi-$Caputo fractional nonlinear Volterra-Fredholm integro-differential equations, Discontinuity, Nonlinearity, and Complexity, 11(1), 97-106.
  27. [27]  Idczak, D. and Kamocki, R. (2023), On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in $\mathbb{R}^n$, Fractional Calculus and Applied Analysis, 14(4), 538-553.
  28. [28]  Balachandran, K. and Trujillo, J.J. (2010), The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear Analysis: Theory, Methods $\&$ Applications, 72, 4587-4593.
  29. [29]  Bargamadi, E., Torkzadeh, L., Nouri, K., and Jajarmi, A. (2021), Solving a system of fractional order Volterra-Fredholm integro differential equations with weakly singular kernels via the second Chebyshev wavelets method, Fractal and Fractional, 5(3), 70.
  30. [30]  Moumen, A. and Mennouni, A. (2022), A new projection method for a system of fractional Cauchy integro differential equations via Vieta-Lucas polynomials, Mathematics, 11(1), 32.
  31. [31]  Zguaid, K., Tajani, A., Jajarmi, A., and Baleanu, D. (2023), On the new Hadamard fractional optimal control problems, Journal of Vibration and Control, 29(19-28), 4413-4421.
  32. [32]  Zhou, D., Babaei, A., Banihashemi, S., Jafari, H., Alzabut, J., and Moshokoa, S.P. (2022), A Chebyshev collocation approach to solve fractional Fisher–Kolmogorov–Petrovskii–Piskunov equation with nonlocal condition, Fractal and Fractional, 6(3), 160.
  33. [33]  Mahrouz, T., Mennouni, A., Moumen, A., and Alraqad, T. (2023), Novel contributions to the system of fractional Hamiltonian equations, Mathematics, 11(13), 3016.
  34. [34]  Jarad, F., Abdeljawad, T., and Baleanu, D. (2012), Caputo-type modification of the Hadamard fractional derivatives, Advances in Difference Equations, 142, 1-8 .
  35. [35]  Smart, D.R. (1974), Fixed Point Theorems, Cambridge Tracts in Mathematics, Cambridge University Press, London–New York.