Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Study of Synchronization between Fractional-Order Chaotic Systems via Matrix Projective Method

Discontinuity, Nonlinearity, and Complexity 14(2) (2025) 279--292 | DOI:10.5890/DNC.2025.06.003

Vijay K. Shukla

Department of Mathematics, D.S.B. Campus, Kumaun University, Nainital-263001, Uttarakhand, India

Download Full Text PDF

 

Abstract

This article studied matrix projective synchronization (MPS) between chaotic systems with hyperbolic nonlinearity. The sufficient conditions for achieving matrix projective synchronization between coupled integer-order and fractional-order chaotic systems with hyperbolic nonlinearities have investigated. In case of matrix projective synchronization the controllers have designed to synchronize chaotic systems. In addition, numerical simulation is discussed to analyze theoretical study. It is also obtained that numerical results are agreed with theoretical results.

References

  1. [1]  Hilfer, R., Butzer, P.L., and Westphal, U. (2010), An introduction to fractional calculus, Applications of Fractional Calculus in Physics, 1-85.
  2. [2]  Xi, H., Li, Y., and Huang, X. (2015), Adaptive function projective combination synchronization of three different fractional-order chaotic systems, Optik, 126(24), 5346-5349.
  3. [3]  Yadav, V.K., Das, S., Bhadauria, B.S., Singh, A.K., and Srivastava, M. (2017), Stability analysis, chaos control of a fractional order chaotic chemical reactor system and its function projective synchronization with parametric uncertainties, Chinese Journal of Physics, 55(3), 594-605.
  4. [4]  Koeller, R. (1984), Applications of fractional calculus to the theory of viscoelasticity, 299-307.
  5. [5] Ghany, H.A. (2013), Exact solutions for stochastic fractional Zakharov-Kuznetsov equations, Chinese Journal of Physics, 51(5), 875-881.
  6. [6]  Choi, J.H., Kim, H., and Sakthivel, R. (2016), On certain exact solutions of diffusive predator-prey system of fractional order, Chinese journal of physics, 54(1), 135-146.
  7. [7]  Ichise, M., Nagayanagi, Y., and Kojima, T. (1971), An analog simulation of non-integer order transfer functions for analysis of electrode processes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 33(2), 253-265.
  8. [8]  Dadras, S., Momeni, H.R., Qi, G., and Wang, Z.L. (2012), Four-wing hyperchaotic attractor generated from a new 4D system with one equilibrium and its fractional-order form, Nonlinear Dynamics, 67(2), 1161-1173.
  9. [9]  Tseng, C.C. (2007), Design of FIR and IIR fractional order Simpson digital integrators, Signal Processing, 87(5), 1045-1057.
  10. [10]  Grigorenko, I. and Grigorenko, E. (2003), Chaotic dynamics of the fractional Lorenz system, Physical Review Letters, 91(3), 034101.
  11. [11]  Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M., Chen, W.C., Lin, K.T., and Kang, Y. (2008), Chaos in the Newton--Leipnik system with fractional order, Chaos, Solitons $\&$ Fractals, 36(1), 98-103.
  12. [12]  Lin, W. (2007), Global existence theory and chaos control of fractional differential equations, Journal of Mathematical Analysis and Applications, 332(1), 709-726.
  13. [13]  Yan, W. and Ding, Q. (2019), A new matrix projective synchronization and its application in secure communication, IEEE Access, 7, 112977-112984.
  14. [14]  Ouannas, A., Azar, A.T., Ziar, T., and Vaidyanathan, S. (2017), On new fractional inverse matrix projective synchronization schemes, In Fractional Order Control and Synchronization of Chaotic Systems, 497-524.
  15. [15]  He, J., Chen, F., and Lei, T. (2018), Fractional matrix and inverse matrix projective synchronization methods for synchronizing the disturbed fractional order hyperchaotic system, Mathematical Methods in the Applied Sciences, 41(16), 6907-6920.
  16. [16]  Ouannas, A. and Abu-Saris, R. (2016), On matrix projective synchronization and inverse matrix projective synchronization for different and identical dimensional discrete-time chaotic systems, Journal of Chaos, 2016(1), p.4912520.
  17. [17]  Wu, Z., Xu, X., Chen, G., and Fu, X. (2014), Generalized matrix projective synchronization of general colored networks with different-dimensional node dynamics, Journal of the Franklin Institute, 351(9), 4584-4595.
  18. [18]  Ouannas, A. and Grassi, G. (2016), Inverse full state hybrid projective synchronization for chaotic maps with different dimensions, Chinese Physics B, 25(9), 090503.
  19. [19]  He, J., Chen, F., Lei, T., and Bi, Q. (2020), Global adaptive matrix-projective synchronization of delayed fractional-order competitive neural network with different time scales, Neural Computing and Applications, 3216), 12813-12826.
  20. [20]  Farid, Y. and Moghaddam, T.V. (2014), Generalized projective synchronization of chaotic satellites problem using linear matrix inequality, International Journal of Dynamics and Control, 2(4), 577-586.
  21. [21]  He, J., Chen, F., and Bi, Q. (2019), Quasi-matrix and quasi-inverse-matrix projective synchronization for delayed and disturbed fractional order neural network, Complexity, 2019.
  22. [22]  Khan, A., Jahanzaib, L.S., Khan, T., and Trikha, P. (2020), Secure communication: using fractional matrix projective combination synchronization, In AIP Conference proceedings, 2253(1), 020009.
  23. [23]  Kaouache, S. and Abdelouahab, M.S. (2020), Inverse matrix projective synchronization of novel hyperchaotic system with hyperbolic sine function non-linearity, DCDIS B: Applications and Algorithms, 27, 145-154.
  24. [24]  Wang, Z., Volos, C., Kingni, S.T., Azar, A.T., and Pham, V.T. (2017), Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity, Optik, 131, 1071-1078.
  25. [25]  Fonzin Fozin, T., Megavarna Ezhilarasu, P., Njitacke Tabekoueng, Z., Leutcho, G.D., Kengne, J., Thamilmaran, K., and Pelap, F. B. (2019), On the dynamics of a simplified canonical Chua's oscillator with smooth hyperbolic sine nonlinearity: Hyperchaos, multistability and multistability control, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(11), 113105.
  26. [26]  Liu, J., Ma, J., Lian, J., Chang, P., and Ma, Y. (2018), An approach for the generation of an nth-order chaotic system with hyperbolic sine, Entropy, 20(4), 230.
  27. [27]  Umoh, E.A. (2014), Synchronization of chaotic flows with variable nonlinear hyperbolic functions via hybrid feedback control, Proceedings of the 2nd Pan African International Conference on Science, Computing and Telecommunications, 7-11.
  28. [28]  Rajagopal, K., Durdu, A., Jafari, S., Uyaroglu, Y., Karthikeyan, A., and Akgul, A. (2019), Multiscroll chaotic system with sigmoid nonlinearity and its fractional order form with synchronization application, International Journal of Non-Linear Mechanics, 116, 262-272.
  29. [29]  Vaidyanathan, S., Volos, C., Pham, V.T., Madhavan, K., and Idowu, B.A. (2014), Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities, Archives of Control Sciences, 24(3), 109-135.
  30. [30]  Xu, F. and Yu, P. (2010), Chaos control and chaos synchronization for multi-scroll chaotic attractors generated using hyperbolic functions, Journal of mathematical analysis and applications, 362(1), 252-274.
  31. [31]  Tchinda, S.F., Mpame, G., Takougang, A.C., and Tamba, V.K. (2019), Dynamic analysis of a snap oscillator based on a unique diode nonlinearity effect, offset boosting control and sliding mode control design for global chaos synchronization, Journal of Control, Automation and Electrical Systems, 30(6), 970-984.
  32. [32] Shukla, V.K., Mishra, P.K., and Kumar A. (2022), Finite-time synchronization between finance hyper-chaotic systems with hyperbolic nonlinearity via adaptive control, Journal of Scientific Research, 66(4), 1-7.
  33. [33]  Yadav, V.K., Shukla, V.K., Srivastava, M., and Das, S. (2019), Dual Phase Synchronization of Chaotic Systems Using Nonlinear Observer Based Technique, Nonlinear Dynamics and Systems Theory, 19(1), 209-216.
  34. [34]  Rajchakit, G., Pratap, A., Raja, R., Cao, J., Alzabut, J., and Huang, C. (2019), Hybrid control scheme for projective lag synchronization of Riemann--Liouville sense fractional order memristive BAM Neural Networks with mixed delays, Mathematics, 7(8), 759.
  35. [35]  Rajchakit, G., Chanthorn, P., Niezabitowski, M., Raja, R., Baleanu, D., and Pratap, A. (2020), Impulsive effects on stability and passivity analysis of memristor-based fractional-order competitive neural networks, Neurocomputing, 417, 290-301.
  36. [36]  Shukla, V.K., Mbarki, L., Shukla, S., Vishal, K., and Mishra, P.K. (2023), Matrix projective synchronization between time delay chaotic systems with disturbances and nonlinearity, International Journal of Dynamics and Control, 11(4), 1926-1933.
  37. [37]  Shukla, V.K., Mishra, P.K., Srivastava, M., Singh, P., and Vishal, K. (2023), Matrix and inverse matrix projective synchronization of chaotic and hyperchaotic systems with uncertainties and external disturbances, Discontinuity, Nonlinearity, and Complexity, 12(4), 775-788.
  38. [38]  Humphries, U., Rajchakit, G., Kaewmesri, P., Chanthorn, P., Sriraman, R., Samidurai, R., and Lim, C.P. (2020), Global stability analysis of fractional-order quaternion-valued bidirectional associative memory neural networks, Mathematics, 8(5), 801.
  39. [39]  Rajchakit, G., Chanthorn, P., Kaewmesri, P., Sriraman, R., and Lim, C. P. (2020), Global Mittag--Leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks, Mathematics, 8(3), 422.
  40. [40]  Narayanan, G., Ali, M.S., Karthikeyan, R., Rajchakit, G., and Jirawattanapanit, A. (2022), Novel adaptive strategies for synchronization control mechanism in nonlinear dynamic fuzzy modeling of fractional-order genetic regulatory networks, Chaos, Solitons $\&$ Fractals, 165, 112748.
  41. [41]  Kilbas, A., Srivastava, H.M., and Trujillo, J. (2006), Theory and Applications of Fractional Differential Equations, 204, Elsevier.
  42. [42]  Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A. (2014), Lyapunov functions for fractional order systems, Communications in Nonlinear Science and Numerical Simulation, 19, 2951-2957.
  43. [43]  Bao, B., Peol, M.A., Bao, H., Chen, M., Li, H., and Chen, B. (2021), No-argument memristive hyper-jerk system and its coexisting chaoticbubbles boosted by initial conditions, Chaos, Solitons $\&$ Fractals, 144, 110744.