Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


On the Number of Limit Cycles in a Li'{e}nard-Like Perturbation of a Non-linear Quadratic Isochronous Center

Discontinuity, Nonlinearity, and Complexity 14(1) (2025) 133--143 | DOI:10.5890/DNC.2025.03.008

Selma Ellaggoune$^1$, Khaireddine Fernane$^2$

$^{1}$ Department of Computer Sciences and Mathematics, Ecole Normale Superieure Assia Djebar, Constantine, Algeria

$^2$ University 8 Mai 1945, Guelma, Algeria

Download Full Text PDF

 

Abstract

In this paper we estimate the maximum number of limit cycles that can bifurcate from an integrable non-linear quadratic ischronous center, when perturbed inside a class of Li\'{e}nard-like polynomial differential systems of arbitrary degree $n$. The main tool employed in this study is the averaging theory of first order.

References

  1. [1]  Hilbert, D. (1902), Mathematische Problems, Lecture in: Second Internat. Congr. Math. Paris, 1900, Nachr. Ges. Wiss. Gttingen Math. Phys. Ki 5 (1900), 253-297; English transl. Bull. Amer. Soc. 8 (1902), 437-479.
  2. [2]  Buic\~{a}, A. and Llibre, J. (2004), Averaging methods for finding periodic orbits via Brouwer degree, Bulletin des Sciences Mathematiques, 128(1), 7-22.
  3. [3]  Chicone, C. and Jacobs, M. (1991), Bifurcation of limit Cycles from Quadratic Isochrones, Journal of Differential Equations, 91, 268-326.
  4. [4]  Llibre, J. and Mereu, A. (2011), Limit cycles for generalized Kukles polynomial differential systems, Nonlinear Analysis, 74, 1261-1271.
  5. [5]  Smale, S. (1998), Mathematical problems for the next century, Mathematical Intelligencer, 20, 7-15.
  6. [6]  Li{e}nard, A. (1928), Etude des oscillations entretenues, Revue g{en{e}rale de l'{e}lectricit{e}}, 23, 946-954.
  7. [7]  Badi, S and Makhlouf, A. (2011), Limit cycles of the generalized Lienard differential equation via averaging theory, Electronic Journal of Differential Equations, 2012(68), 1-11.
  8. [8]  Boussaada, I. and Chouikha, A.R. (2006), Existence of periodic solution for perturbed generalized Lienard equations, Electronic Journal of Differential Equations EJDE, 2006(140), 1-10.
  9. [9]  Christopher, C.J. and Lynch, S. (1999), Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces, Nonlinearity, 12(4), p.1099.
  10. [10]  Gasull, A. and Torregrosa, J. (1999), Small-amplitude limit cycle in Lienard systems via multiplicity, Journal of Differential Equations, 159, 1015-1039.
  11. [11]  Lynch, S. (1995), Limit cycles if generalized Li{e}nard equations, Applied Mathematics Letters, 8, 15-17.
  12. [12]  Lynch, S. (1998), Generalized quadratic Li{e}nard equations, Applied Mathematics Letters, 11, 7-10.
  13. [13]  Lynch, S. (1999), Generalized cubic Li{e}nard equations, Applied Mathematics Letters, 12, 1-6.
  14. [14]  Lynch, S. and Christopher, C.J. (1999), Limit cycles in highly non-linear differential equations, Journal of Sound and Vibration, 224, 505-517.
  15. [15]  Loud, W.S. (1964), Behavior of the period of solutions of certain plane autonomous systems near center, Contributions to Differential Equations, 3, 21-36.
  16. [16]  Martins, R.M., Mereu, A.C., and Oliveira, R.D.S. (2014), An estimative for the number of limit cycles in a Li{e}nard-like perturbation of a quadratic non-linear center, Cadernos de Matematica, 15, 1-18.
  17. [17]  Llibre, J., Mereu, A., and Teixeira, M.A. (2010), Limit cycles of the generalized polynomial LiĆ©nard differential equations. In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 148(2), 363-383.
  18. [18]  Murdock, J., Sanders, A., and Verhultst, F. (2007), Averaging methods in Nonlinear Dynamical Systems, (2nd edition Appl Math sci 50 Springer).