Discontinuity, Nonlinearity, and Complexity
On the Number of Limit Cycles in a
Li'{e}nard-Like Perturbation of a Non-linear Quadratic
Isochronous Center
Discontinuity, Nonlinearity, and Complexity 14(1) (2025) 133--143 | DOI:10.5890/DNC.2025.03.008
Selma Ellaggoune$^1$, Khaireddine Fernane$^2$
$^{1}$ Department of Computer Sciences and Mathematics, Ecole Normale Superieure Assia Djebar, Constantine,
Algeria
$^2$ University 8 Mai 1945, Guelma, Algeria
Download Full Text PDF
Abstract
In this paper we estimate the maximum number of limit cycles that can
bifurcate from an integrable non-linear quadratic ischronous
center, when perturbed inside a class of Li\'{e}nard-like polynomial
differential systems of arbitrary degree $n$. The main tool employed in this study is the averaging
theory of first order.
References
-
| [1]  | Hilbert, D. (1902),
Mathematische Problems, Lecture in: Second Internat.
Congr. Math. Paris, 1900, Nachr. Ges. Wiss. Gttingen Math. Phys.
Ki 5 (1900), 253-297; English transl. Bull. Amer. Soc. 8 (1902),
437-479.
|
-
| [2]  | Buic\~{a}, A. and Llibre, J. (2004), Averaging methods for finding periodic orbits via Brouwer degree, Bulletin des Sciences Mathematiques, 128(1), 7-22.
|
-
| [3]  | Chicone, C. and Jacobs, M. (1991), Bifurcation of limit Cycles from
Quadratic Isochrones, Journal of Differential Equations, 91,
268-326.
|
-
| [4]  | Llibre, J. and Mereu, A. (2011), Limit cycles for generalized Kukles polynomial
differential systems, Nonlinear Analysis, 74, 1261-1271.
|
-
| [5]  | Smale, S. (1998), Mathematical problems for the next century,
Mathematical Intelligencer, 20, 7-15.
|
-
| [6]  | Li{e}nard, A. (1928), Etude des oscillations entretenues,
Revue g{en{e}rale de l'{e}lectricit{e}},
23, 946-954.
|
-
| [7]  | Badi, S and Makhlouf, A. (2011), Limit cycles of the generalized
Lienard differential equation via averaging theory,
Electronic Journal of Differential Equations,
2012(68), 1-11.
|
-
| [8]  | Boussaada, I. and Chouikha, A.R. (2006), Existence of periodic solution for perturbed
generalized Lienard equations, Electronic Journal of Differential Equations EJDE,
2006(140), 1-10.
|
-
| [9]  | Christopher, C.J. and Lynch, S. (1999), Small-amplitude limit cycle bifurcations for Lienard systems with quadratic or cubic damping or restoring forces,
Nonlinearity, 12(4), p.1099.
|
-
| [10]  | Gasull, A. and Torregrosa, J. (1999), Small-amplitude limit cycle in Lienard
systems via multiplicity, Journal of Differential Equations, 159, 1015-1039.
|
-
| [11]  | Lynch, S. (1995), Limit cycles if generalized Li{e}nard equations, Applied Mathematics Letters, 8, 15-17.
|
-
| [12]  | Lynch, S. (1998), Generalized quadratic Li{e}nard equations, Applied Mathematics Letters, 11, 7-10.
|
-
| [13]  | Lynch, S. (1999), Generalized cubic Li{e}nard equations, Applied Mathematics Letters, 12, 1-6.
|
-
| [14]  | Lynch, S. and Christopher, C.J. (1999), Limit cycles in highly non-linear differential equations,
Journal of Sound and Vibration, 224, 505-517.
|
-
| [15]  | Loud, W.S. (1964), Behavior of the period of solutions of certain plane
autonomous systems near center,
Contributions to Differential
Equations, 3, 21-36.
|
-
| [16]  | Martins, R.M., Mereu, A.C., and Oliveira, R.D.S. (2014), An estimative for the number of limit cycles in a
Li{e}nard-like perturbation of a quadratic non-linear center,
Cadernos de Matematica, 15, 1-18.
|
-
| [17]  | Llibre, J., Mereu, A., and Teixeira, M.A. (2010), Limit cycles of the generalized polynomial LiĆ©nard differential equations. In Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 148(2), 363-383.
|
-
| [18]  | Murdock, J., Sanders, A., and Verhultst, F. (2007), Averaging methods in Nonlinear
Dynamical Systems, (2nd edition Appl Math sci 50 Springer).
|