Discontinuity, Nonlinearity, and Complexity
On Generalized Weyl Fractional q-Integral Operator of General Class of q-Polynomials
Discontinuity, Nonlinearity, and Complexity 13(4) (2024) 733--741 | DOI:10.5890/DNC.2024.12.011
Biniyam Shimelis, D.L. Suthar
Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia
Download Full Text PDF
Abstract
In the present paper, we obtain generalized Weyl fractional q-integrals of the general class of q-polynomials and demonstrate their use by studying q-Konhouser biorthogonal polynomial, q-Jacobi polynomials and basic analogue of the Kamp\'{e} de F\'{e}riet function. Polynomials have been obtained as a particular case of our major findings.
References
-
[1] |
Ernst, T. (2000), The History of q-Calculus and a New Method, Department of Mathematics, Uppsala University, Sweden.
|
-
[2] |
Kac, V. and Cheung, P. (2002), Quantum Calculus, Springer-Verlag, New York.
|
-
[3] |
Annaby, M.H. and Mansour, Z.S. (2012), q-Fractional Calculus and Equations, Lecture Notes in Mathematics, 2056, Springer, Berlin.
|
-
[4] |
Rajkovi{c}, P.M., Marinkovr{c}, S.D., and Stankovi{c}, M.S. (2007), Fractional integrals and derivatives in q-calculus, Applicable Analysis and Discrete Mathematics, 1, 311-323.
|
-
[5] |
Yadav, R.K., Purohit, S.D., and Kalla, S.L. (2008), On generalized Weyl fractional q-integral operators involving generalized basic hypergoemetric functions, Fractional Calculus and Applied Analysis, 11(2), 129-142.
|
-
[6] |
Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley \& Sons, New York, NY, USA.
|
-
[7] |
Kumar, D., Ayant, F., Nisar, K.S., and Suthar, D.L. (2023), On Fractional q-integral operators involving the basic analogue of multivariable Aleph-function, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 93, 211–218. https://doi.org/10.1007/s40010-022-00796-7.
|
-
[8] |
Kumar, D., Ayant, F., Ucar, F., and Purohit, S.D. (2022), Certain fractional q-integral formulas for the basic I-function of two variables, Mathematics in Engineering, Science and Aerospace, 13(2), 315-321.
|
-
[9] |
Vyas, V.K., Al-Jarrah, A.A., and Purohit, S.D. (2019), q-Sumudu transforms of product of generalized basic hypergeometric functions and their applications, Applications and Applied Mathematics, 14(2), 1099-1111.
|
-
[10] |
Vyas, V.K., Al-Jarrah, A.A., Purohit, S.D., Araci, S., and Nisar, K.S. (2020), q-Laplace transform for product of general class of q-polynomials and q-analogue of I-function, Journal of Inequalities and Special Functions, 11(3), 21-28.
|
-
[11] |
Vyas, V.K., Al-Jarrah, A.A., Suthar, D.L., and Abeye, N. (2021), Fractional q-integral operators for the product of a q-polynomial and q-analogue of the q-functions and their applications, Mathematical Problems in Engineering, 2021, 1-9. https://doi.org/10.1155/2021/7858331.
|
-
[12] |
Yadav, R.K. and Purohit, S.D. (2004), Applications of Riemann-Liouville fractional q-integral operator to basic hypergeometric functions, Acta Ciencia Indica, 30(3), 593-600.
|
-
[13] |
Yadav, R.K. and Purohit, S.D. (2006), On applications of Kober fractional q-integral operator to certain basic hypergeometric functions, Journal of Rajasthan Academy of Physical Sciences, 5(4), 437-448.
|
-
[14] |
Al-Omari, S., Suthar, D.L., and Araci, S. (2021), A fractional q-integral operator associated with a certain class of q-Bessel functions and q-generating series, Advances in Difference Equation, 441, https://doi.org/10.1186/s13662-021-03594-4.
|
-
[15] |
N{a}poles Valdes, J.E., Castillo Medina, J.A., Guzm{a}n, P.M., and Lugo L.M. (2019), A new local fractional derivative of q uniform type, Discontinuity, Nonlinearity and Complexity, 8(1), 101-109.
|
-
[16] |
Castillo Medina, J.A., Garc{i}a, S.C., N{a}poles Valdes, J.E., and Moyaho, T.G. (2021), Some new results in the q-calculus, Discontinuity, Nonlinearity, and Complexity, 10(4), 755-763.
|
-
[17] |
Bermudo, S., K{o}rus, P., and N{a}poles Vald{e}s, J.E. (2020), On q-Hermite-Hadamard inequalities for general convex functions, Acta Mathematica Hungarica, 162, 364-374.
|
-
[18] |
K{o}rus, P. and N{a}poles Vald{e}s, J.E. (2022), q-Hermite-Hadamard inequalities for functions with convex or h-convex q-derivative, Mathematical Inequalities \& Applications, 25(2), 601-610.
|
-
[19] |
Purohit, S.D., Gour, M.M., and Joshi, S. (2021), On some classes of analytic functions connected with Kober integral operator in fractional q-calculus, Mathematics in Engineering, Science and Aerospace, 12(3), 759-769.
|
-
[20] |
Purohit, S.D., Gour, M.M., Joshi, S., and Suthar, D.L. (2021), Certain classes of analytic functions bound with Kober operators in q-calculus, Journal of Mathematics, 2021, 1-8. https://doi.org/10.1155/2021/3161275.
|
-
[21] |
Purohit, S.D., Murugusundaramoorthy, G., Kaliappan, V., Suthar, D.L., and Jangid, K. (2022), A unified class of spiral-like functions including Kober fractional operators in quantum calculus, Palestine Journal of Mathematics, 12(2), 487-498.
|
-
[22] |
Al-Salam, W.A. (1966), Some fractional q-integrals and q-derivatives, Proceedings of the Edinburgh Mathematical Society, 15, 135-140.
|
-
[23] |
Agarwal, R.P. (1969), Certain fractional q-integrals and q-derivatives,
Mathematical Proceedings of the Cambridge Philosophical Society, 66, 365-370.
|
-
[24] |
Jackson, F.H. (1910), On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41, 193-203.
|
-
[25] |
Gasper, G. and Rahman, M. (1990), Basic Hypergeometric Series, Cambridge University Press, Cambridge.
|
-
[26] |
Ernst, T. (2003), A method for q-calculus, Journal of Nonlinear Mathematical Physics, 10(4), 487-525.
|
-
[27] |
Hahu, W. (1949), Beitruge zur theorie der heineschen reihen, Mathematische Nachrichten, 2, 340-379.
|
-
[28] |
Srivastava, H.M. and Agarwal, A.K. (1989), Generating functions for a class of q-polynomials, Annali di Matematiea pura ed Applicata, 154(4), 99-109.
|
-
[29] |
Purohit, S.D. and Kalla, S.L. (2009), On the fractional q-calculus of a general class of q-polynomials, Algebras Groups and Geometries, 26, 1-14.
|
-
[30] |
Yadav, R.K. and Singh, B. (2004), On a set of basic polynomials Zαn(x;k,q) suggested by basic Laguerre polynomials Lαn(x,q), The Mathematics Student, 73(1-4), 183-189.
|
-
[31] |
Jain, V.K. (1980), Some expansions involving basic hypergeometric function of two variables, Pacific Journal of Mathematics, 91(2), 349-362.
|