Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


On Generalized Weyl Fractional $q$-Integral Operator of General Class of $q$-Polynomials

Discontinuity, Nonlinearity, and Complexity 13(4) (2024) 733--741 | DOI:10.5890/DNC.2024.12.011

Biniyam Shimelis, D.L. Suthar

Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia

Download Full Text PDF

 

Abstract

In the present paper, we obtain generalized Weyl fractional $q$-integrals of the general class of $q$-polynomials and demonstrate their use by studying $q$-Konhouser biorthogonal polynomial, $q$-Jacobi polynomials and basic analogue of the Kamp\'{e} de F\'{e}riet function. Polynomials have been obtained as a particular case of our major findings.

References

  1. [1]  Ernst, T. (2000), The History of $q$-Calculus and a New Method, Department of Mathematics, Uppsala University, Sweden.
  2. [2]  Kac, V. and Cheung, P. (2002), Quantum Calculus, Springer-Verlag, New York.
  3. [3]  Annaby, M.H. and Mansour, Z.S. (2012), $q$-Fractional Calculus and Equations, Lecture Notes in Mathematics, 2056, Springer, Berlin.
  4. [4]  Rajkovi{c}, P.M., Marinkovr{c}, S.D., and Stankovi{c}, M.S. (2007), Fractional integrals and derivatives in $q$-calculus, Applicable Analysis and Discrete Mathematics, 1, 311-323.
  5. [5]  Yadav, R.K., Purohit, S.D., and Kalla, S.L. (2008), On generalized Weyl fractional $q$-integral operators involving generalized basic hypergoemetric functions, Fractional Calculus and Applied Analysis, 11(2), 129-142.
  6. [6]  Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley \& Sons, New York, NY, USA.
  7. [7]  Kumar, D., Ayant, F., Nisar, K.S., and Suthar, D.L. (2023), On Fractional $q$-integral operators involving the basic analogue of multivariable Aleph-function, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 93, 211–218. https://doi.org/10.1007/s40010-022-00796-7.
  8. [8]  Kumar, D., Ayant, F., Ucar, F., and Purohit, S.D. (2022), Certain fractional $q$-integral formulas for the basic $I$-function of two variables, Mathematics in Engineering, Science and Aerospace, 13(2), 315-321.
  9. [9]  Vyas, V.K., Al-Jarrah, A.A., and Purohit, S.D. (2019), $q$-Sumudu transforms of product of generalized basic hypergeometric functions and their applications, Applications and Applied Mathematics, 14(2), 1099-1111.
  10. [10]  Vyas, V.K., Al-Jarrah, A.A., Purohit, S.D., Araci, S., and Nisar, K.S. (2020), $q$-Laplace transform for product of general class of $q$-polynomials and $q$-analogue of $I$-function, Journal of Inequalities and Special Functions, 11(3), 21-28.
  11. [11]  Vyas, V.K., Al-Jarrah, A.A., Suthar, D.L., and Abeye, N. (2021), Fractional $q$-integral operators for the product of a $q$-polynomial and $q$-analogue of the $q$-functions and their applications, Mathematical Problems in Engineering, 2021, 1-9. https://doi.org/10.1155/2021/7858331.
  12. [12]  Yadav, R.K. and Purohit, S.D. (2004), Applications of Riemann-Liouville fractional $q$-integral operator to basic hypergeometric functions, Acta Ciencia Indica, 30(3), 593-600.
  13. [13]  Yadav, R.K. and Purohit, S.D. (2006), On applications of Kober fractional $q$-integral operator to certain basic hypergeometric functions, Journal of Rajasthan Academy of Physical Sciences, 5(4), 437-448.
  14. [14]  Al-Omari, S., Suthar, D.L., and Araci, S. (2021), A fractional $q$-integral operator associated with a certain class of $q$-Bessel functions and $q$-generating series, Advances in Difference Equation, 441, https://doi.org/10.1186/s13662-021-03594-4.
  15. [15]  N{a}poles Valdes, J.E., Castillo Medina, J.A., Guzm{a}n, P.M., and Lugo L.M. (2019), A new local fractional derivative of $q$ uniform type, Discontinuity, Nonlinearity and Complexity, 8(1), 101-109.
  16. [16]  Castillo Medina, J.A., Garc{i}a, S.C., N{a}poles Valdes, J.E., and Moyaho, T.G. (2021), Some new results in the $q$-calculus, Discontinuity, Nonlinearity, and Complexity, 10(4), 755-763.
  17. [17]  Bermudo, S., K{o}rus, P., and N{a}poles Vald{e}s, J.E. (2020), On $q$-Hermite-Hadamard inequalities for general convex functions, Acta Mathematica Hungarica, 162, 364-374.
  18. [18]  K{o}rus, P. and N{a}poles Vald{e}s, J.E. (2022), $q$-Hermite-Hadamard inequalities for functions with convex or h-convex $q$-derivative, Mathematical Inequalities \& Applications, 25(2), 601-610.
  19. [19]  Purohit, S.D., Gour, M.M., and Joshi, S. (2021), On some classes of analytic functions connected with Kober integral operator in fractional $q$-calculus, Mathematics in Engineering, Science and Aerospace, 12(3), 759-769.
  20. [20]  Purohit, S.D., Gour, M.M., Joshi, S., and Suthar, D.L. (2021), Certain classes of analytic functions bound with Kober operators in $q$-calculus, Journal of Mathematics, 2021, 1-8. https://doi.org/10.1155/2021/3161275.
  21. [21]  Purohit, S.D., Murugusundaramoorthy, G., Kaliappan, V., Suthar, D.L., and Jangid, K. (2022), A unified class of spiral-like functions including Kober fractional operators in quantum calculus, Palestine Journal of Mathematics, 12(2), 487-498.
  22. [22]  Al-Salam, W.A. (1966), Some fractional $q$-integrals and $q$-derivatives, Proceedings of the Edinburgh Mathematical Society, 15, 135-140.
  23. [23]  Agarwal, R.P. (1969), Certain fractional $q$-integrals and $q$-derivatives, Mathematical Proceedings of the Cambridge Philosophical Society, 66, 365-370.
  24. [24]  Jackson, F.H. (1910), On $q$-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41, 193-203.
  25. [25]  Gasper, G. and Rahman, M. (1990), Basic Hypergeometric Series, Cambridge University Press, Cambridge.
  26. [26]  Ernst, T. (2003), A method for $q$-calculus, Journal of Nonlinear Mathematical Physics, 10(4), 487-525.
  27. [27]  Hahu, W. (1949), Beitruge zur theorie der heineschen reihen, Mathematische Nachrichten, 2, 340-379.
  28. [28]  Srivastava, H.M. and Agarwal, A.K. (1989), Generating functions for a class of $q$-polynomials, Annali di Matematiea pura ed Applicata, 154(4), 99-109.
  29. [29]  Purohit, S.D. and Kalla, S.L. (2009), On the fractional q-calculus of a general class of q-polynomials, Algebras Groups and Geometries, 26, 1-14.
  30. [30]  Yadav, R.K. and Singh, B. (2004), On a set of basic polynomials $Z_{n}^{\alpha} \left(x;k,q \right)$ suggested by basic Laguerre polynomials $L_{n}^{\alpha} \left(x,q \right)$, The Mathematics Student, 73(1-4), 183-189.
  31. [31]  Jain, V.K. (1980), Some expansions involving basic hypergeometric function of two variables, Pacific Journal of Mathematics, 91(2), 349-362.