Discontinuity, Nonlinearity, and Complexity
On Generalized Weyl Fractional $q$-Integral Operator of General Class of $q$-Polynomials
Discontinuity, Nonlinearity, and Complexity 13(4) (2024) 733--741 | DOI:10.5890/DNC.2024.12.011
Biniyam Shimelis, D.L. Suthar
Department of Mathematics, Wollo University, P.O. Box 1145, Dessie, Ethiopia
Download Full Text PDF
Abstract
In the present paper, we obtain generalized Weyl fractional $q$-integrals of the general class of $q$-polynomials and demonstrate their use by studying $q$-Konhouser biorthogonal polynomial, $q$-Jacobi polynomials and basic analogue of the Kamp\'{e} de F\'{e}riet function. Polynomials have been obtained as a particular case of our major findings.
References
-
[1]  |
Ernst, T. (2000), The History of $q$-Calculus and a New Method, Department of Mathematics, Uppsala University, Sweden.
|
-
[2]  |
Kac, V. and Cheung, P. (2002), Quantum Calculus, Springer-Verlag, New York.
|
-
[3]  |
Annaby, M.H. and Mansour, Z.S. (2012), $q$-Fractional Calculus and Equations, Lecture Notes in Mathematics, 2056, Springer, Berlin.
|
-
[4]  |
Rajkovi{c}, P.M., Marinkovr{c}, S.D., and Stankovi{c}, M.S. (2007), Fractional integrals and derivatives in $q$-calculus, Applicable Analysis and Discrete Mathematics, 1, 311-323.
|
-
[5]  |
Yadav, R.K., Purohit, S.D., and Kalla, S.L. (2008), On generalized Weyl fractional $q$-integral operators involving generalized basic hypergoemetric functions, Fractional Calculus and Applied Analysis, 11(2), 129-142.
|
-
[6]  |
Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley \& Sons, New York, NY, USA.
|
-
[7]  |
Kumar, D., Ayant, F., Nisar, K.S., and Suthar, D.L. (2023), On Fractional $q$-integral operators involving the basic analogue of multivariable Aleph-function, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 93, 211–218. https://doi.org/10.1007/s40010-022-00796-7.
|
-
[8]  |
Kumar, D., Ayant, F., Ucar, F., and Purohit, S.D. (2022), Certain fractional $q$-integral formulas for the basic $I$-function of two variables, Mathematics in Engineering, Science and Aerospace, 13(2), 315-321.
|
-
[9]  |
Vyas, V.K., Al-Jarrah, A.A., and Purohit, S.D. (2019), $q$-Sumudu transforms of product of generalized basic hypergeometric functions and their applications, Applications and Applied Mathematics, 14(2), 1099-1111.
|
-
[10]  |
Vyas, V.K., Al-Jarrah, A.A., Purohit, S.D., Araci, S., and Nisar, K.S. (2020), $q$-Laplace transform for product of general class of $q$-polynomials and $q$-analogue of $I$-function, Journal of Inequalities and Special Functions, 11(3), 21-28.
|
-
[11]  |
Vyas, V.K., Al-Jarrah, A.A., Suthar, D.L., and Abeye, N. (2021), Fractional $q$-integral operators for the product of a $q$-polynomial and $q$-analogue of the $q$-functions and their applications, Mathematical Problems in Engineering, 2021, 1-9. https://doi.org/10.1155/2021/7858331.
|
-
[12]  |
Yadav, R.K. and Purohit, S.D. (2004), Applications of Riemann-Liouville fractional $q$-integral operator to basic hypergeometric functions, Acta Ciencia Indica, 30(3), 593-600.
|
-
[13]  |
Yadav, R.K. and Purohit, S.D. (2006), On applications of Kober fractional $q$-integral operator to certain basic hypergeometric functions, Journal of Rajasthan Academy of Physical Sciences, 5(4), 437-448.
|
-
[14]  |
Al-Omari, S., Suthar, D.L., and Araci, S. (2021), A fractional $q$-integral operator associated with a certain class of $q$-Bessel functions and $q$-generating series, Advances in Difference Equation, 441, https://doi.org/10.1186/s13662-021-03594-4.
|
-
[15]  |
N{a}poles Valdes, J.E., Castillo Medina, J.A., Guzm{a}n, P.M., and Lugo L.M. (2019), A new local fractional derivative of $q$ uniform type, Discontinuity, Nonlinearity and Complexity, 8(1), 101-109.
|
-
[16]  |
Castillo Medina, J.A., Garc{i}a, S.C., N{a}poles Valdes, J.E., and Moyaho, T.G. (2021), Some new results in the $q$-calculus, Discontinuity, Nonlinearity, and Complexity, 10(4), 755-763.
|
-
[17]  |
Bermudo, S., K{o}rus, P., and N{a}poles Vald{e}s, J.E. (2020), On $q$-Hermite-Hadamard inequalities for general convex functions, Acta Mathematica Hungarica, 162, 364-374.
|
-
[18]  |
K{o}rus, P. and N{a}poles Vald{e}s, J.E. (2022), $q$-Hermite-Hadamard inequalities for functions with convex or h-convex $q$-derivative, Mathematical Inequalities \& Applications, 25(2), 601-610.
|
-
[19]  |
Purohit, S.D., Gour, M.M., and Joshi, S. (2021), On some classes of analytic functions connected with Kober integral operator in fractional $q$-calculus, Mathematics in Engineering, Science and Aerospace, 12(3), 759-769.
|
-
[20]  |
Purohit, S.D., Gour, M.M., Joshi, S., and Suthar, D.L. (2021), Certain classes of analytic functions bound with Kober operators in $q$-calculus, Journal of Mathematics, 2021, 1-8. https://doi.org/10.1155/2021/3161275.
|
-
[21]  |
Purohit, S.D., Murugusundaramoorthy, G., Kaliappan, V., Suthar, D.L., and Jangid, K. (2022), A unified class of spiral-like functions including Kober fractional operators in quantum calculus, Palestine Journal of Mathematics, 12(2), 487-498.
|
-
[22]  |
Al-Salam, W.A. (1966), Some fractional $q$-integrals and $q$-derivatives, Proceedings of the Edinburgh Mathematical Society, 15, 135-140.
|
-
[23]  |
Agarwal, R.P. (1969), Certain fractional $q$-integrals and $q$-derivatives,
Mathematical Proceedings of the Cambridge Philosophical Society, 66, 365-370.
|
-
[24]  |
Jackson, F.H. (1910), On $q$-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41, 193-203.
|
-
[25]  |
Gasper, G. and Rahman, M. (1990), Basic Hypergeometric Series, Cambridge University Press, Cambridge.
|
-
[26]  |
Ernst, T. (2003), A method for $q$-calculus, Journal of Nonlinear Mathematical Physics, 10(4), 487-525.
|
-
[27]  |
Hahu, W. (1949), Beitruge zur theorie der heineschen reihen, Mathematische Nachrichten, 2, 340-379.
|
-
[28]  |
Srivastava, H.M. and Agarwal, A.K. (1989), Generating functions for a class of $q$-polynomials, Annali di Matematiea pura ed Applicata, 154(4), 99-109.
|
-
[29]  |
Purohit, S.D. and Kalla, S.L. (2009), On the fractional q-calculus of a general class of q-polynomials, Algebras Groups and Geometries, 26, 1-14.
|
-
[30]  |
Yadav, R.K. and Singh, B. (2004), On a set of basic polynomials $Z_{n}^{\alpha} \left(x;k,q \right)$ suggested by basic Laguerre polynomials $L_{n}^{\alpha} \left(x,q \right)$, The Mathematics Student, 73(1-4), 183-189.
|
-
[31]  |
Jain, V.K. (1980), Some expansions involving basic hypergeometric function of two variables, Pacific Journal of Mathematics, 91(2), 349-362.
|