Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


A Discrete-Time Dynamical System of Wild Mosquito Population with Allee Effects

Discontinuity, Nonlinearity, and Complexity 13(3) (2024) 495--506 | DOI:10.5890/DNC.2024.09.008

U. A. Rozikov, Z.S. Boxonov

V.I. Romanovskiy Institute of Mathematics of Uzbek Academy of Sciences

Central Asian University, 264, Milliy bog St, 111221, Tashkent, Uzbekistan

Faculty of Mathematics, National University of Uzbekistan

Download Full Text PDF

 

Abstract

We study a discrete-time dynamical system of wild mosquito population with parameters: $\beta$ - the birth rate of adults; $\alpha$ - maximum emergence rate; $\mu>0$ - the death rate of adults; $\gamma$ - Allee effects. We prove that if $\gamma\geq\frac{\alpha(\beta-\mu)}{\mu^2}$ then the mosquito population dies and if $\gamma<\frac{\alpha(\beta-\mu)}{\mu^2}$ holds then extinction or survival of the mosquito population depends on their initial state.

References

  1. [1]  Becker, N. (2003), Mosquitoes and Their Control, Kluwer Academic/Plenum, New York.
  2. [2]  Li, J. (2011), Malaria model with stage-structured mosquitoes, Mathematical Biosciences and Engineering, 8, 753-768.
  3. [3]  Rozikov, U.A. and Velasco, M.V. (2019), A discrete-time dynamical system and an evolution algebra of mosquito population, Journal of Mathematical Biology, 78(4), 1225-1244.
  4. [4]  Rozikov, U.A. (2020), Population Dynamics: Algebraic and Probabilistic Approach, World Sci. Publ. Singapore, 460.
  5. [5]  Lutambi, A.M., Penny, M.A., Smith, T., and Chitnis, N. (2013), Mathematical modelling of mosquito dispersal in a heterogeneous environment, Mathematical Biosciences, 241(2) 198-216.
  6. [6]  Mosquito, (2010), Available from: http://www.enchantedlearning.com/subjects/insects/mosquito.
  7. [7]  Li, J., Cai, L., and Li, Y. (2017), Stage-structured wild and sterile mosquito population models and their dynamics, Journal of Biological Dynamics, 11(2), 79-101.
  8. [8]  Boxonov, Z.S. and Rozikov, U.A. (2021), A discrete-time dynamical system of stage-structured wild and sterile mosquito population, Nonlinear Studies, 28(2), 413-425.
  9. [9]  Boxonov, Z.S. and Rozikov, U.A. (2021), Dynamical system of a mosquito population with distinct birth-death rates, Journal of Applied Nonlinear Dynamics, 10(4), 807-816.
  10. [10]  Boxonov, Z.S. (2023), A discrete-time dynamical system of mosquito population, Journal of Difference Equations and Applications, 29(1), 67-83.
  11. [11]  Fauvergue, X. (2012), A review of mate-finding Allee effects in insects: from individual behavior to population management, Entomologia Experimentalis et Applicata, 146(1), 79-92, https://doi.org/10.1111/eea.12021.
  12. [12]  Jamilov, U.U. (2013), Quadratic stochastic operators corresponding to graphs, Lobachevskii Journal of Mathematics, 34(2), 148-151, doi:10.1134/S1995080213020042.
  13. [13]  Jamilov, U.U. (2016), On a family of strictly non-Volterra quadratic stochastic operators, Journal of Physics: Conference Series, 697, 012013. doi:10.1088/1742-6596/697/1/012013.
  14. [14]  Mukhamedov, F. and Saburov, M. (2017), Stability and monotonicity of Lotka-Volterra type operators, Qualitative Theory of Dynamical Systems, 16(2), 249-267.
  15. [15]  Mukhamedov, F., Pah, C.H., and Rosli, A. (2019), On Non-ergodic Volterra Cubic Stochastic operators, Qualitative Theory of Dynamical Systems, 18(3), 1225-1235.
  16. [16]  Mukhamedov, F.M., Jamilov, U.U., and Pirnapasov, A.T. (2019), On non-ergodic uniform Lotka-Volterra operators, Mathematical Notes, 105(2), 258-264, DOI: 10.1134/S0001434619010280.
  17. [17]  Rozikov, U.A. and Shoyimardonov, S.K. (2019), On ocean ecosystem discrete time dynamics generated by $\ell$-Volterra operators, International Journal Biomathematics, 12(2), 1950015.
  18. [18]  Devaney, R.L. (2003), An Introduction to Chaotic Dynamical System, Westview Press.