Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Existence Local and Global of Solution of Initial-Boundary Value Problem for Class of Fractional $p-$Laplacian Equation with Logarithmic Nonlinearity

Discontinuity, Nonlinearity, and Complexity 13(1) (2024) 113--131 | DOI:10.5890/DNC.2024.03.009

Younes Bidi$^1$, Abderrahmane Beniani$^2$

$^1$ University of Djillali Liabes - B. P. 89, Sidi Bel Abbes 22000, Algeria. Laboratoire de Mathématiques Pures et Appliquées

$^2$ Department of Mathematics, University of Ain Temouchent, Laboratory of Engineering and Sustainable Development, Ain Temouchent 46000, Algeria

Download Full Text PDF

 

Abstract

In this paper, we study the initial-boundary value problem for class of fractional $p-$Laplacian equation with logarithmic nonlinearity. By means of the Galerkin approximations, we prove the local and global existence of the weak solutions.We also establish finite time Blow up.

References

  1. [1]  Caffarelli, L. (2012), Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations, Abel Symposia, Springer, Heidelberg, 7.
  2. [2]  Laskin, N. (2000), Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 268(4-6), 298-305.
  3. [3]  Fiscella, A. and Valdinoci, E. (2014), A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Analysis, 94, 156-170.
  4. [4]  Kirchhoff, G.(1883), Vorlesungen uber Mathematische Physik, Mechanik, Teubner, Leipzig.
  5. [5]  Bidi, Y. Beniani, A., Zennir, Kh., and Himadan, A. (2021), Global existence and dynamic structure of solutions for damped wave equation involving the fractional Laplacian, Demonstratio Mathematica, 54, 245–258.
  6. [6]  Autuori, G. and Pucci, P.(2013), Elliptic problems involving the fractional Laplacian in $R^N$, Journal of Differential Equations, 255, 2340-2362.
  7. [7]  Pan, N., Pucci, P., and Zhang, B.L. (2018), Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian, Journal of Evolution Equations, 18, 385-409.
  8. [8]  Bisci, G.M. and Radulescu, V.D. (2015), State solutions of scalar field fractional Schrodinger equations, Calculus of Variations and Partial Differential Equations, 54, 2985-3008.
  9. [9]  Lin, Q., Tian, X.T., Xu, R.Z., and Zhang, M.N. (2019), Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy, Discrete and Continuous Dynamical Systems S, 13(7), 2095-2107.
  10. [10]  Caponi, M. and Pucci, P. (2016), Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Annali di Matematica Pura ed Applicata, 195, 2099-2129.
  11. [11]  Di Nezza, E., Palatucci, G., and Valdinoci, E. (2012), Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136, 521-573.
  12. [12]  Pan, N., Pucci, P., Xu, R.Z., and Zhang, B.L. (2019) Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, Journal of Evolution Equations, 19, 615-643.
  13. [13]  Tartar, L. (2007), An introduction to Sobolev spaces and interpolations spaces, Lecture Notes of the Unione Matematica Italiana, 3, 5.