Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


One-Dimensional Variational Problem on Normal Deformations with Anisotropy

Discontinuity, Nonlinearity, and Complexity 12(3) (2023) 643--653 | DOI:10.5890/DNC.2023.09.011

Panayotis Vyridis, Vianey A. Hern\'andez Ram\'irez

Department of Physics and Mathematics, Instituto Polit'ecnico Nacional, I.P.N., Campus Zacatecas, Zacatecas, 098160, M'exico

Download Full Text PDF

 

Abstract

We study the variation along the normal direction of the deformation energy of a plane curve under the existence of an anisotropic term. The problem of variational character corresponds to a nonlinear nonhomogeneous differential equation of fourth order. This kind of problems arises from the elasticity theory, in particular from the deformation theory of elastic shells.

References

  1. [1]  Giusti, E. (1984), Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, Vol. 80, Boston: Birkhäuser.
  2. [2]  Osmolovskii, V.G. (2000), The variational problem on phase transitions in Mechanics of continuum media , St. Petersburg University Publications.
  3. [3]  Ambrosio, L. and Mantegazza, C. (1998), Curvature and distance function from a manifold, The Journal of Geometric Analysis, 8, 723-748.
  4. [4]  Kobayashi, R. and Giga, Y. (2001), On anisotropy and curvature effects for growing crystals: in memory of prof. Yamaguti, Japan Journal of Industrial and Applied Mathematics, 18, 207-230.
  5. [5]  Tadjbakhsh, I. (1969), Buckled Stated of Elastic Rings, Bifurcation Theory and Nonlinear Eigenvalue problems, Keller, J.B. and Antman, S.S. eds., W.A. Benjamin, Inc., New York, 69-92. Appendix by S. Antmann, ibid. 93-98.
  6. [6]  Ciarlet, P.G. (1988), Mathematical Elasticity, Vol. 1, Studies in Mathematics and its Applications; V. 20, Elsevier Science Publishers,
  7. [7]  Gilbarg, D. and Trudinger, N.S. (1977), Elliptic Partial Differential Equations of Second Order, 224(2), Springer-Verlag,
  8. [8]  Vyridis, P. (2001), Bifurcation in a quasilinear variational problem on a one-dimensional manifold, Journal of Mathematical Sciences, 106(3), 2919-2924.
  9. [9]  Ne\v{c}as, J. (1967), Les methodes directes en theories des equations elliptiques, Academia, Editions de l' Academie Tchecoslovaque de Sciences, Prague.