Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Asymptotic Stability of a Linear Nabla Fractional Difference Equation

Discontinuity, Nonlinearity, and Complexity 12(3) (2023) 575--581 | DOI:10.5890/DNC.2023.09.007

Jagan Mohan Jonnalagadda

Department of Mathematics, Birla Institute of Technology and Science Pilani, Hyderabad - 500078, Telangana, India

Download Full Text PDF

 

Abstract

In this work, we consider the two-term linear nabla fractional difference equation \begin{equation*} \label{FDE L} {(}\nabla^{\nu}_{-1}u{)}(t) = \lambda u(t - 1), \quad t \in \mathbb{N}_{1}, \end{equation*} where $0 < \nu < 1$, $\lambda \in \mathbb{R}$, $\nabla^{\nu}_{-1}u$ denotes the $\nu$-th Riemann--Liouville nabla fractional difference of $u$ based at $-1$, and $\mathbb{N}_{1} = \{1, 2, 3, \cdots\}$. First we transform this nabla fractional difference equation into a Volterra difference equation of convolution-type. Using the well established qualitative theory of Volterra difference equations, we obtain sufficient conditions on asymptotic stability of solutions of the nabla fractional difference equation.

References

  1. [1]  Miller, K.S. and Ross, B. (1989), Fractional difference calculus: Univalent functions, fractional calculus, and their applications (Koriyama, 1988), Chichester: Ellis Horwood; New York; Toronto: Halsted Press, 139-152.
  2. [2]  Gray, H.L. and Zhang, N.F. (1988), On a new definition of the fractional difference, Mathematics of Computation, 50(182), 513-529.
  3. [3]  Atici, F.M. and Eloe, P.W. (2009), Discrete fractional calculus with the nabla operator, Electronic Journal of Qualitative Theory of Differential Equations [electronic only], Special Edition I(3), 12 pp.
  4. [4]  Anastassiou, G.A. (2010), Nabla discrete fractional calculus and nabla inequalities, Mathematical and Computer Modelling, 51(5-6), 562-571.
  5. [5]  Goodrich, C. and Peterson, A.C. (2015), Discrete Fractional Calculus, Springer, Cham.
  6. [6]  Atici, F.M. and Eloe, P.W. (2011), Linear systems of fractional nabla difference equations, The Rocky Mountain Journal of Mathematics, 41(2), 353-370.
  7. [7]  \v{C}erm{a}k, J., Kisela, T., and Nechv{a}tal, L. (2012), Stability and asymptotic properties of a linear fractional difference equation, Advances in Difference Equations, 2012(122), 14 pp.
  8. [8]  Shobanadevi, N. and Mohan, J.J. (2014), Stability of linear nabla fractional difference equations, Proceedings of the Jangjeon Mathematical Society, 17(4), 651-657.
  9. [9]  Jagan Mohan, J. (2017), Asymptotic behaviour of linear fractional nabla difference equations, International Journal of Difference Equations, 12(2), 255-265.
  10. [10]  The Anh, P., Babiarz, A., Czornik, A., Niezabitowski, M., and Siegmund, S. (2020), Some results on linear nabla Riemann-Liouville fractional difference equations, Mathematical Methods in the Applied Sciences, 43(13), 7815-7824.
  11. [11]  Atici, F.M., Atici, M., Nguyen, N., Zhoroev, T., and Koch, G. (2019), A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects, Computational and Mathematical Biophysics, 7(1), 10-24.
  12. [12]  Jia, B., Erbe, L., and Peterson, A. (2015), Comparison theorems and asymptotic behavior of solutions of discrete fractional equations, Electronic Journal of Qualitative Theory of Differential Equations, 2015(89), 18 pp.
  13. [13]  Bohner, M. and Peterson, A. (2001), Dynamic Equations on Time Scales: An Introduction with Applications, Birkh\"{a}user Boston, Inc., Boston, MA.
  14. [14]  Ahrendt, K., Castle, L., Holm, M., and Yochman, K. (2012), Laplace transforms for the nabla-difference operator and a fractional variation of parameters formula, Communications in Applied Analysis, 16(3), 317-347.
  15. [15]  Mozyrska, D. and Wyrwas, M. (2015), The $Z$-transform method and delta type fractional difference operators, Discrete Dynamics in Nature and Society, 2015, Art. ID 852734, 12 pp.
  16. [16]  Elaydi, S. (2005), An Introduction to Difference Equations, Third edition, Undergraduate Texts in Mathematics, Springer, New York.
  17. [17]  Morchalo, J. (1995), Asymptotic equivalence of Volterra difference systems, Publication Material, 39(2), 301-312.
  18. [18]  Pachpatte, B.G. (2002), Inequalities for Finite Difference Equations, Monographs and Textbooks in Pure and Applied Mathematics, 247, Marcel Dekker, Inc., New York.