Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Fixed Point Results for Generalized $alpha$-Admissible Almost Type $mathcal{Z}$-Contractions

Discontinuity, Nonlinearity, and Complexity 12(3) (2023) 469--483 | DOI:10.5890/DNC.2023.09.001

Jia Deng$^{1}$, Xiao-lan Liu$^{1,2,3}$, Yan Sun$^{1}$

$^1$ College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China

$^2$ Artificial Intelligence Key Laboratory of Sichuan Province, Zigong, Sichuan 643000, China

$^3$ South Sichuan Center for Applied Mathematics, Zigong, Sichuan 643000, China

Download Full Text PDF

 

Abstract

In this article, we present several types of generalized $\alpha$-admissible almost type $\mathcal{Z}$-contractions, which can be considered as the generalizations of $\alpha$-admissible $\mathcal{Z}$-contractions and almost $\mathcal{Z}$-contractions, and obtain the fixed point results of these contractions in complete metric spaces. Moreover, we utilize some examples to verify the validity of main results. Finally, we give some fixed point results related to our results.

Acknowledgments

This work is partially supported by National Natural Science Foundation of China(Grant No.11872043), Natural Science Foundation of Sichuan Province (Grant No.2023NSFSC1299), Fund Project of Sichuan University of Science and Engineering in hit-haunting for talents (Grant No.2022RC04), 2021 Innovation and Entrepreneurship Training Program for College Students of Sichuan University of Science and Engineering (Grant No.cx2021150), 2022 Graduate Innovation Project of Sichuan University of Science and Engineering (Grant No.Y2022190).

References

  1. [1]  Banach, S. (1922), Sur les o{p}erations dans les ensembles abstraits et leur application aux {e}quations int{e}grales, Fundamenta Mathematicae, 3(1), 133-181.
  2. [2]  Khojasteh, F., Shukla, S., and Redenovi, S. (2015), A new approach to the study fixed point theorems via simulation functions, Filomat, 29(6), 1189-1194.
  3. [3]  Nastasi, A. and Vetro, P. (2015), Fixed point results on metric and partial metric spaces via simulation functions, Journal of Nonlinear Science and Applications, 8(6), 1059-1069.
  4. [4]  Karapinar, E. (2016), Fixed points results via simulation functions, Filomat, 30(8), 2343-2350.
  5. [5]  Isik, H., Gungor, N.B., Park, C., and Jang, S.Y. (2018), Fixed point theorems for almost $\mathcal{Z}$-contractions with an application, Mathematics, 6(3), 27.
  6. [6]  Cvetkovi, M., Karapinar, E., and Rakoevi, V. (2018), Fixed point results for admissible $\mathcal{Z}$-contractions, Fixed Point Theory, 19(2), 515-526.
  7. [7]  Alghamdi, M.A., Gulyaz-Ozyurt, S., and Karapinar, E. (2020), A note on extended $\mathcal{Z}$-contraction, Mathematics, 8(2), 195.
  8. [8]  Kumar, M. and Sharma, R. (2019), A new approach to the study of fixed point theory for simulation functions in $G$-metric spaces, Boletim da Sociedade Paranaense de Matematica, 37(2), 115-121.
  9. [9]  Chifu, C. and Karapinar, E. (2020), On contractions via simulation functions on extended $b$-metric spaces, Miskolc Mathematical Notes, 21(1), 127-141.
  10. [10]  Chifu, C. and Karapinar, E. (2019), Admissible hybrid $\mathcal{Z}$-contractions in $b$-metric spaces, Axioms, 9(1), 2.
  11. [11]  Samet, B., Vetro, C., and Vetro, P. (2012), Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Analysis: Theory, Methods and Applications, 75(4), 2154-2165.
  12. [12]  Karapinar, E., Kumam, P., and Salimi, P. (2013), On $\alpha$-$\psi$-Meir-Keeler contractive mappings, Fixed Point Theory and Applications, 2013, 94.
  13. [13]  Popescu, O. (2014), Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory and Applications, 2014, 190.
  14. [14]  Radenovic, S., Kadelburg, Z., Jandrlic, D., and Jandrlic, A. (2012), Some results on weakly contractive maps, Bulletin of the Iranian Mathematical Society, 38(3), 625-645.