Discontinuity, Nonlinearity, and Complexity
Advancements on $psi $-Hilfer Fractional Calculus and Fractional Integral Inequalities
Discontinuity, Nonlinearity, and Complexity 12(2) (2023) 245--264 | DOI:10.5890/DNC.2023.06.002
Department of Mathematical Sciences, University of Memphis,
Memphis, TN 38152, USA
Download Full Text PDF
Abstract
After motivation we give a complete background on needed $\psi $-Hilfer
fractional Calculus. Then we produce $\psi $-Hilfer fractional left and
right Taylor formulae. We give also important $\psi $-Hilfer fractional left
and right representation integral formulae regarding $\psi $-Hilfer left and
right fractional derivatives. Then we give extensive applications of our $%
\psi $-Hilfer fractional results to left and right $\psi $-Hilfer fractional
Ostrowski, Opial and Poincar\'{e} type integral inequalities. We create the
space for more future forthcoming results.
References
-
[1]  | Ostrowski, A. (1938), \"{U}ber die absolutabweichung einer
differtentiebaren Funktion von ihrem integralmittelwert, Commentarii Mathematici Helvetici,
10, 226-227.
|
-
[2]  | Anastassiou, G.A. (1995), Ostrowski type inequalities,
Proceedings of the American Mathematical Society, 123, 3775-3781.
|
-
[3]  | Vanterler da C. Sousa, J., and Capelas de Oliveira, E. (2018), On
the $\psi $-Hilfer fractional derivative, Communications in
Nonlinear Science and Numerical Simulation, 60, 72-91.
|
-
[4]  | Samko, S.G., Kilbas, A.A., and Marichev, O.I. (1993), Fractional
Integrals and Derivatives: Theory and Applications, Gordon and Breach
Science Publishers, Switzerland.
|
-
[5]  | Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J. (2006), Theory and
Applications of Fractional Differentiation Equations, North Holland,
Amsterdam, New York.
|
-
[6]  | Almeida, R. (2017), A Caputo fractional derivative of a
function with respect to another function, Communications in Nonlinear Science and Numerical Simulation,
44, 460-481.
|
-
[7]  | Tomovski, \v{Z}., Hilfer, R., and Srivastava, H.M. (2010), Fractional
and operational calculus with generalized fractional derivative operators
and Mittag-Leffler type functions, Integral Transforms and Special Functions, 21(11), 797-814.
|
-
[8]  | Anastassiou, G.A. (2009), Fractional Differentiation Inequalities, Springer, Heidelberg, New York.
|
-
[9]  | Anastassiou, G.A. (2018), Intelligent Computations: Abstract
Fractional Calculus, Inequalities, Approximations, Springer, Heidelberg,
New York.
|
-
[10]  | Anastassiou, G.A. (2011), Advances on Fractional Inequalities,
Springer, New York.
|
-
[11]  | Anastassiou, G.A. (2011), Intelligent Mathematics: Computational
Analysis, Springer, Heidelberg, New York.
|
-
[12]  | Opial, Z. (1960), Sur une in{e}galit{e}, Annales Polonici Mathematici,
8, 29-32.
|