Discontinuity, Nonlinearity, and Complexity
Continuability of Lienard's Type System with Generalized Local Derivative
Discontinuity, Nonlinearity, and Complexity 12(1) (2023) 1--11 | DOI:10.5890/DNC.2023.03.001
George E. Chatzarakis, Juan E. N\'{a}poles Vald\'{e}s
Download Full Text PDF
Abstract
In this paper, we study the boundedness and continuability of the solutions
of a generalized Li\'{e}nard type system, using fractional derivatives of
the local type. We obtain sufficient conditions for the solutions to be
bounded and continuous by a suitably defined Lyapunov function. We
illustrate the results and suggest extensions to asymptotic stability,
through various examples adapted from the relevant literature.
Acknowledgments
The authors thank the Reviewer for his/her constructive suggestions and
useful corrections that improved the content of the paper.
References
-
[1]  | Lyapunov, A. M. (1966), Stability of Motion, Academic Press,
New-York \& London.
|
-
[2]  | Li{e}nard, A. (1928), {E}tude des oscillations entretenues,
Revue G{enerale de l'{E}lectricit{e}}, 23, 901-912, 946-954.
|
-
[3]  | Atangana, A. (2016), Derivative with a New Parameter Theory, Methods
and Applications, Academic Press.
|
-
[4]  | Khalil, R., Al Horani, M., Yousef, A., and Sababheh, M. (2014), A new
definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70.
|
-
[5]  | Abdeljawad, T. (2015), On conformable fractional calculus, Journal of computational and Applied Mathematics, 279, 57-66
|
-
[6]  | Guzm{a}n, P.M., Langton, G., Lugo, L.M., Medina, J., and N{a}poles Vald{e}s, J.E. (2018), A new definition of a fractional derivative of
local type, Journal of Mathematical Analysis, 9(2), 88-98.
|
-
[7]  | N{a}poles Vald{e}s, J.E., Guzm{a}n, P.M., Lugo, L.M., and Kashuri, A. (2020), The local non conformable derivative and Mittag Leffler function,
Sigma Journal of Engineering and Natural Sciences, 38(2), 1007-1017.
|
-
[8]  | Zhao, D. and Luo, M. (2017), General conformable fractional derivative
and its physical interpretation, Calcolo, 54, 903-917.
|
-
[9]  | Gorenflo, R. and Mainardi, F. (1997), Fractional Calculus: Integral and
Differential Equations of Fractional Order, pp. 223-276. Springer, Wien.
|
-
[10]  | Machado, J.T., Kiryakova, V., and Mainardi, F. (2010), Recent history
of fractional calculus, Communications in Nonlinear Science and Numerical Simulation,
16(3), 1140-1153.
|
-
[11]  | Fleitas, A., M{e}ndez, J.A., N{a}poles, J.E., and Sigarreta, J.M. (2019), On the some classical systems of Li{e}nard in general context,
Revista Mexicana de F{\isica}, 65(6), 618-625.
|
-
[12]  | Guzm{a}n, P.M., Lugo, L.M., and N{a}poles Vald{e}s, J.E. (2019), A note on stability of certain Lienard fractional
equation, International Journal of Mathematics and Computer Science, 14(2), 301-315.
|
-
[13]  | Mart{\i}nez, F., Mohammed, P.O., and N{a}poles Vald{e}s, J.E. (2022), Non conformable fractional Laplace transform, Kragujevac Journal of Mathematics, 46(3), 341-354.
|
-
[14]  | Mart{\i}nez, F. and N{a}poles Vald{e}s, J.E. (2020), Towards a
non-confortable fractional calculus of n-variables, Journal of Mathematics and Applications,
43, 87-98.
|
-
[15]  | N{a}poles Vald{e}s, J.E., Guzm{a}n, P.M., and Lugo, L.M. (2018),
Some new results on nonconformable fractional calculus, Advances in Dynamical Systems and Applications,
13(2), 167-175.
|
-
[16]  | Baleanu, D. and Fernandez, A. (2019), On fractional operators and
their classifications, Mathematics, 7(9), 830, 10pp.
|
-
[17]  | Baleanu, D. (2020), Comments on: Ortigueira, M., Martynyuk, V., Fedula,
M., Machado, J.A.T., The failure of certain fractional calculus operators in
two physical models, in Fractional Calculus and Applied Analysis, 22(2), 255-277; Fractional Calculus and Applied Analysis, 23(1), DOI:https://doi.org/10.1515/fca-2020-0012.
|
-
[18]  | Guzm{a}n, P.M., Lugo, L.M., N{a}poles Vald{e}s, J.E., and Vivas, M. (2020), On a new generalized integral operator and certain operating
properties, Axioms, 9(2), 1-14.
|
-
[19]  | Al-Refai, M. and Abdeljawad, T. (2017), Fundamental results of conformable
Sturm--Liouville eigenvalue problems, Complexity, 2017, https://doi.org/10.1155/2017/3720471.
|
-
[20]  | Acay, B., Bas, E., and Abdeljawad, T. (2020), Non-local fractional calculus
from different viewpoint generated by truncated M-derivative, Journal of Computational and Applied Mathematics , 366, 112410 (2020).
|
-
[21]  | Fleitas, A., N{a}poles, J.E., Rodriguez, J.M., and Sigarreta, J.M. (2021), Note on the generalized conformable derivative, Revista de la
UMA, to appear.
|
-
[22]  | N{a}poles Valdes, J.E. (1995), A continuation result for a
bidimensional system of differential equation, Revista integraci{on},
13(2), 49-54.
|
-
[23]  | Pilipenko, A.M. and Biryukov, V.N. (2013), Investigation of modern
numerical analysis methods of self-oscillatory circuits efficiency, Journal of Radio Electronics, 8, UDC 621.372, 532.59.
|
-
[24]  | Hara, T., Yoneyama, T., and Sugie, J. (1985), Necessary and sufficient
conditions for the continuability of solutions of the system $x' = y - F(x)$.
$y'=-g(x)$, Applicable Analysis, 19, 169-180.
|
-
[25]  | Hasan, Y.Q. and Zhu, L.M. (2007), The bounded solutions of Lienard
system, Journal of Applied Sciences, 7(8), 1239-1240.
|
-
[26]  | Hricis{a}kova, D. (1990), Continuability and (non-) oscillatory
properties of solutions of generalized Lienard Equation, Hiroshima Mathematical Journal,
20, 11-22.
|
-
[27]  | Lugo, L.M., N{a}poles Vald{e}s, J.E., and Noya, S.I. (2014), On
the construction of regions of stability, Pure and Applied Mathematics
Journal, 3(4), 87-91.
|
-
[28]  | N{a}poles Vald{e}s, J.E. (2000), On the boundedness and
asymptotic stability in the whole of Lienard equation with restoring term,
Revista de la Uni{on Matem{a}tica Argentina}, 41(4), 47-59
(Spanish).
|
-
[29]  | Peng, L. and Huang, L. (1994), On global asymptotic stability
of the zero solution of a generalized Lienard's system, Applied Mathematics-A Journal of Chinese Universities, 9(4), 359-363.
|
-
[30]  | N{a}poles Valdes, J.E. and Repilado, R. (1997), On the
boundedness and stability in global sense of the solutions of a
two-dimensional system of differential equations, Revista Ciencias Matemáticas, XVI, 71-74.
|
-
[31]  | N{a}poles Valdes, J.E. (1999), On the global stability of
non-autonomous systems, Revista Colombiana de Matemáticas, 33, 1-8.
|
-
[32]  | Odani, K. (1995), The limit cycle of the Vanderpol equation is not
algebraic, Journal of Differential Equations, 115, 146-152.
|
-
[33]  | Hricisakova, D. (1990), Continuability and (non-) oscillatory
properties of solutions of generalized Lienard equation, Hiroshima Mathematical Journal,
20, 11-22.
|
-
[34]  | Hricisakova, D. (1992), Negative solutions of the generalized
Lienard equation, Hiroshima Mathematical Journal, 23, 155-160.
|
-
[35]  | Yu, S.X. and Zhang, J.Z. (1993), On the center of the Li{e}nard
equation, Journal of Differential Equations, 102, 53-61.
|