Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Exponential Stability for Nonlinear Perturbed Time Scales Systems with Gr"{o}nwall-Bihari-Inequalities

Discontinuity, Nonlinearity, and Complexity 11(4) (2022) 781--792 | DOI:10.5890/DNC.2022.12.015

Amira Ayari$^{1}$, Khaled Boukerrioua$^{1}$, Brahim Kilani$^{2}$

$^{1}$ Lanos Laboratory, Faculty of Sciences, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

$^{2}$ Laboratory of Mathematics, Dynamics and Modelization, Faculty of Sciences, Badji Mokhtar-Annaba University, P.O. Box 12, 23000 Annaba, Algeria

Download Full Text PDF

 

Abstract

This paper focuses on the problem of exponential stability of certain classes of dynamic perturbed systems on time scales using time scale versions of some Gr\"{o}nwall-Bihari type inequalities.We prove under certain conditions on the nonlinear perturbations that the resulting perturbed nonlinear initial value problem still acquire exponential stable, if the associated linear system has already owned this property. The paper ends up with two illustrative examples to highlight the utility of our results.

References

  1. [1]  Hilger, S. (1988), Ein Masskettenkalk\"{u}l mit Anwendung auf Zentrumsmannigfaltigkeiten (Ph.D. thesis), Universit\"{a}tW\"{u}rzburg.
  2. [2]  Nasser, B.B., Boukerrioua, K., and Hammami, M.A. (2014), On the stability of perturbed time scale systems using integral inequalities, Applied Sciences, 16, 56-71.
  3. [3]  Nasser, B.B., Boukerrioua, K., and Hammami, M.A. (2015), On stability and stabilization of perturbed time scale systems with Gronwall inequalities, Zh. Mat. Fiz. Anal. Geom, 11, 207-235.
  4. [4]  Nasser, B.B., Boukerrioua, K., Defoort, M., Djemai, M., and Hammami, M.A. (2016), State feedback stabilization of a class of uncertain nonlinear systems on nonuniform time domains, Systems Control Lett., 97, 18-26.
  5. [5]  Nasser, B.B., Boukerrioua, K., Defoort, M., Djemai, M., Hammami, M.A., and Laleg-Kirati, T.M. (2019), Sufficient conditions for uniform exponential stability and h-stability of some classes of dynamic equations on arbitrary time scales, Nonlinear Analysis: Hybrid Systems, 32, 54-64.
  6. [6]  Bohner, M. and Martynyuk, A.A. (2007), Elements of stability theory of A.M. liapunov for dynamic equations on time scales, Nonlinear Dynamics and Systems Theory, 7(3), 225-251.
  7. [7] Choi, S.K., Koo, N.J., and Im., D.M. (2006), $h$-Stability for linear dynamic equations on time scales, J.Math. Anal. Appl., 324, 707-720.
  8. [8] Choi, S.K., Goo, Y.H., and Koo, N. (2008), $h$-Stability of dynamic equations on time scales with nonregressivity, Abstract and Applied Analysis, Article ID 632474, 13 pages.
  9. [9] Choi, S.K., Im, D.M., and Koo, N. (2008), Stability of linear dynamic systems on time scales, Advances in Difference Equations, Article ID 670203, 12 pages.
  10. [10] Dacunha, J.J. (2005), Stability for time varying linear dynamic systems on time scales, J. Comput. Appl. Math., 176, 381-410.
  11. [11] Martynyuk, A.A. (2016), Foundations and Applications Stability: Theory for Dynamic Equations on Time Scales, Birkhauser, Boston.
  12. [12] Neggal, B., Boukerrioua, K., Kilani, B., and Meziri, I. (2019), h-stability for nonlinear abstract dynamic equations on time scales and applications, Rendiconti del Circolo Matematico di Palermo Series 2.
  13. [13] Pinto, M. (1984), Perturbations of asymptotically stable differential systems, Analysis, 4(1-2), 161-175.
  14. [14] Bohner, M. and Peterson, A. (2001), Dynamic Equations on Time Scales: An Introduction with Applications, Birkh\"{a}user, Boston, Mass, USA.
  15. [15] Bohner, M. and Peterson, A. Eds. (2003), Advances in Dynamic Equations on Time Scales, Birkh\"{a}user, Boston, Mass, USA.
  16. [16] Dhongade, U.D. and Deo, S.G. (1973), Some generalizations of Bellman-Bihari integral inequalities, J. Math. Anal. Appl., 44, 218--226.
  17. [17] Wong, F., Yeh, C., and Hong, C.H. (2006), Gronwall inequalities on time scales, Mathematical Inequalities $\&$ Applications, 9(1), 75-86.