Discontinuity, Nonlinearity, and Complexity
Exponential Stability for Nonlinear Perturbed Time Scales Systems with Gr"{o}nwall-Bihari-Inequalities
Discontinuity, Nonlinearity, and Complexity 11(4) (2022) 781--792 | DOI:10.5890/DNC.2022.12.015
Amira Ayari$^{1}$, Khaled Boukerrioua$^{1}$, Brahim Kilani$^{2}$
$^{1}$ Lanos Laboratory, Faculty of Sciences, Badji Mokhtar-Annaba
University, P.O. Box 12, 23000 Annaba,
Algeria
$^{2}$ Laboratory of Mathematics, Dynamics and Modelization, Faculty of Sciences, Badji Mokhtar-Annaba
University,
P.O. Box 12, 23000 Annaba,
Algeria
Download Full Text PDF
Abstract
This paper focuses on the problem of exponential stability of certain
classes of dynamic perturbed systems on time scales using time scale
versions of some Gr\"{o}nwall-Bihari type inequalities.We prove under certain
conditions on the nonlinear perturbations that the resulting perturbed
nonlinear initial value problem still acquire exponential stable, if the
associated linear system has already owned this property. The paper ends up with two
illustrative examples to highlight the utility of our results.
References
-
[1]  | Hilger, S. (1988), Ein Masskettenkalk\"{u}l mit Anwendung auf
Zentrumsmannigfaltigkeiten (Ph.D. thesis), Universit\"{a}tW\"{u}rzburg.
|
-
[2]  | Nasser, B.B., Boukerrioua, K., and Hammami, M.A. (2014), On the stability of perturbed time scale systems using integral inequalities, Applied Sciences,
16, 56-71.
|
-
[3]  | Nasser, B.B., Boukerrioua, K., and Hammami, M.A. (2015), On stability and stabilization of perturbed time scale systems with Gronwall inequalities,
Zh. Mat. Fiz. Anal. Geom, 11, 207-235.
|
-
[4]  | Nasser, B.B., Boukerrioua, K., Defoort, M., Djemai, M., and Hammami, M.A. (2016), State feedback stabilization of a class of uncertain nonlinear
systems on nonuniform time domains, Systems Control Lett., 97, 18-26.
|
-
[5]  | Nasser, B.B., Boukerrioua, K., Defoort, M., Djemai, M., Hammami, M.A., and Laleg-Kirati, T.M. (2019), Sufficient conditions for uniform
exponential stability and h-stability of some classes of dynamic equations on arbitrary time scales, Nonlinear Analysis: Hybrid Systems, 32, 54-64.
|
-
[6]  | Bohner, M. and Martynyuk, A.A. (2007), Elements of stability theory of
A.M. liapunov for dynamic equations on time scales, Nonlinear Dynamics and
Systems Theory, 7(3), 225-251.
|
-
[7]  | Choi, S.K., Koo, N.J., and Im., D.M. (2006), $h$-Stability for linear dynamic equations on time scales, J.Math. Anal. Appl., 324, 707-720.
|
-
[8]  | Choi, S.K., Goo, Y.H., and Koo, N. (2008), $h$-Stability of dynamic
equations on time scales with nonregressivity, Abstract and Applied
Analysis, Article ID 632474, 13 pages.
|
-
[9]  | Choi, S.K., Im, D.M., and Koo, N. (2008), Stability of linear dynamic
systems on time scales, Advances in Difference Equations,
Article ID 670203, 12 pages.
|
-
[10]  | Dacunha, J.J. (2005), Stability for time varying linear dynamic systems
on time scales, J. Comput. Appl. Math., 176, 381-410.
|
-
[11]  | Martynyuk, A.A. (2016), Foundations and Applications Stability: Theory for
Dynamic Equations on Time Scales, Birkhauser, Boston.
|
-
[12]  | Neggal, B., Boukerrioua, K., Kilani, B., and Meziri, I. (2019), h-stability for
nonlinear abstract dynamic equations on time scales and applications,
Rendiconti del Circolo Matematico di Palermo Series 2.
|
-
[13]  | Pinto, M. (1984), Perturbations of asymptotically stable differential
systems, Analysis, 4(1-2), 161-175.
|
-
[14]  | Bohner, M. and Peterson, A. (2001), Dynamic Equations on Time Scales: An Introduction with Applications, Birkh\"{a}user, Boston, Mass, USA.
|
-
[15]  | Bohner, M. and Peterson, A. Eds. (2003), Advances in Dynamic Equations on Time Scales, Birkh\"{a}user, Boston, Mass, USA.
|
-
[16]  | Dhongade, U.D. and Deo, S.G. (1973), Some generalizations of Bellman-Bihari
integral inequalities, J. Math. Anal. Appl., 44, 218--226.
|
-
[17]  | Wong, F., Yeh, C., and Hong, C.H. (2006), Gronwall
inequalities on time scales, Mathematical Inequalities $\&$ Applications,
9(1), 75-86.
|