Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


An Approximate Solution for the Non-Linear Fractional Schr"{o}dinger Equation with Harmonic Oscillator

Discontinuity, Nonlinearity, and Complexity 11(4) (2022) 767--780 | DOI:10.5890/DNC.2022.12.014

Abdulrahman N. Akour, Emad K. Jaradat, Ala'a M. Al-Faqih

Department of Basic Scientific Sciences, Al-Huson College, Al-Balqa Applied University, Jordan

Download Full Text PDF

 

Abstract

In this work, we propose an approximate solution for the nonlinear Schr\"{o}dinger with harmonic oscillator by fractional calculus with Caputo definition. It is observed that the nonlinear Schr\"{o}dinger equation in one and two dimensions effect on the behavior of the wave function, the result shows the technique is highly encouraging and efficient.

References

  1. [1]  Kanth, A.S. and Aruna, K. (2009), Two-dimensional differential transform method for solving linear and non-linear Schrodinger equations, Chaos Solitons Fractals, https://doi.org/10.1016/j.chaos.2008.08.037.
  2. [2]  Adomain, G. (1988), A review of the decomposition method in applied mathematics, Journal of mathematical analysis and applications, 135, 501-544.
  3. [3]  Rida, S., El-sherbiny, H., and Arafa, A. (2008), On the solution of the fractional nonlinear Schr\"{o}dinger equation, Phys. Lett. A, 372, 553-558.
  4. [4]  Jafari, H., Khalique, C., and Nazari, M. (2011), Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion- wave equations, Applied Mathematics Letters, 24, 1799-1805.
  5. [5]  Kumar, S., Huseyin K., and Ahmet, Y. (2012), A fractional model of gas dynamics equations and its analytical approximate solution using laplace transform, Z. Naturforsch., A: Phys. Sci., 67, 389-396
  6. [6]  Mohamed, A.E. and Khaled, A. (2012), Approximate solution to the time--space fractional cubic nonlinear Schrodinger equation, Applied Mathematical Modelling, 36, 5678-5685.
  7. [7]  Baleanu, D. and Kumar, D. (2019), Fractional Calculus and its Applications in Physics, Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-958-2.
  8. [8]  Sousa, E. (2011), Numerical approximations for fractional diffusion equations via splines, Computers and Mathematics with Applications, 62, 938-944.
  9. [9]  Saxena, R.K. and Nishimoto, K. (2002), on a fractional integral formula of Saigo operator, J. Fract. Calc., 22, 57-58.
  10. [10]  Emad, K.J., Amer, D.A., and Wajd, A. (2018), Using Laplace decomposition method to solve non-linear Klein-Gordon equation, UPB Sci Bull. Series D, 80, 213-222.
  11. [11]  Biazar, J., Ansari, R., Hosseini, K., and Gholamin, P. (2008), Solution of the linear and non-linear Schr\"{o}dinger equations using homotopy perturbation and Adomain Decomposition methods, International Mathematical Forum, 3, 1891-1897.
  12. [12]  Emad, K.J., Omar, A., Mohammad, A., and Ala'a, M. (2018), An approximate analytical solution of the nonlinear Schr\"{o}dinger equation with Harrmonic oscillator using homotopy perturbation method and Laplace- Adomain decomposition method, Advance in Mathematical Physics. https://doi.org/10.1155/2018/6765021.
  13. [13]  Rozmej, P. and Bandrowski, B. (2010), On fractional Schr\"{o}dinger equation, Comput. Methods Sci. Technol., 16, 191-194
  14. [14]  Laskin, N. (2002), Fractional Schr\"{o}dinger equation, Phys. Rev. E, 66, 056108-056115 https://doi.org/10.1103/ PhysRevE.66.056108.
  15. [15]  Zheng, L., Wang, T., Zhang, X., and Na, L. (2013), The nonlinear Schr\"{o}dinger harmonic oscillator problem with small odd or even disturbances, Applied Mathematics Letters, 26, 463-468 https://doi.org/10.1016/j.aml.2012.11.009.