Discontinuity, Nonlinearity, and Complexity
Nonlinear Behavior of a Micro-resonator with Electrostatic Force on Both Sides that is Described by a Duffing Type Oscillator
Discontinuity, Nonlinearity, and Complexity 11(4) (2022) 735--749 | DOI:10.5890/DNC.2022.12.011
L. Laskaridis, J.O. Maaita, E. Meletlidou
Physics Department, Aristotle University of Thessaloniki,
Thessaloniki, Greece
Download Full Text PDF
Abstract
A Duffing type oscillator simulates a micromechanical resonator with electrostatic force on both sides. The system, concerning the amplitude of the external excitation and the damping parameter, has rich dynamics that contain regular (periodic and semi- periodic) and chaotic oscillations. Melnikov's function proves the existence of homoclinic chaos.
References
-
[1]  |
Lyshevski, S.E. (2001), Nano and Microelectromechanical Systems, CRC Press LLC.
|
-
[2]  |
Khanna, V.K. (2016), Integrated Nanoelectronics Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies, Springer.
|
-
[3]  |
Schwab, K.C., Henriksen, E.A., Worlock, J.M., and Roukes, M.L.(2000), Measurement of the quantum of thermal conductance, Nature, 404, 974-977.
|
-
[4]  |
Lifshitz, R. and Cross, M.C. (2008), Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators, Wiley.
|
-
[5]  |
Laurent Duraffourg Julien Arcamone (2015), Nanoelectromechanical Systems, ISTE Ltd.
|
-
[6]  |
Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., and Fathi, M. (2014), Nano-resonator frequency response based on strain gradient theory, Journal of Physics D: Applied Physics,
47(36), 365303.
|
-
[7]  |
Mestrom, R.M.C., Fey, R.H.B., van Beek, J.T.M., Phan, K.L., and Nijmeijer, H. (2007), Modelling the Dynamics of a MEMS Resonator: Simulations and Experiments, Elsevier B.V.
|
-
[8]  |
Huang, X.M.H., Zorman, C.A., Mehregany, M., and Roukes, M.L. (2003), Nanodevice motion at microwave frequencies, Nature, 421-496, 2003.
|
-
[9]  |
Cleland, A.N. and Geller, M.R. (2004),Superconducting qubit storage and entanglement with nanomechanical resonators, Physical Review Letters, 93, 070501.
|
-
[10]  |
Peng, H.B., Chang, C.W., Aloni, S., Yuzvinsky, T.D., and Zettl, A. (2006), Ultra high frequency nanotube resonators, Physical Review Letters, 97, 087203.
|
-
[11]  |
Rhoads, J.F., Shaw, S.W., and Turner, K.L. (2008), Nonlinear dyamics and its applications in micro and nanoresonators, ASME Dynamic Systems and Control Conference.
|
-
[12]  |
Requa, M.V. and Turner, K.L. (2007), Precise frequency estimation in a microelectromechanical parametric resonator, Appl. Phys. Lett., 90(17), 173508.
|
-
[13]  |
Miandoab, E.M., Yousefi-Koma, A., Pishkenari, H.N., and Tajadodianfar, F. (2015), Study of
nonlinear dynamics and chaos in MEMS/NEMS resonators, Communications in Nonlinear Science and Numerical Simulation.
|
-
[14]  |
Miandoab, E.M., Pishkenari, H.N., Yousefi-Koma, A., and Hoorzad, H. (2014), Polysilicon nano-beam model based on modified couple stress and Eringen's nonlocal elasticity theories, Physica E: Low- dimensional Systems and Nanostructures, 63, 223-228.
|
-
[15]  |
Tilmons, H.A. and Legtenberg, R. (1994), Electrostatically driven vacuum - encapsulated polysilicon resonators: Part II: Theory and performance, Sensors and Actuators A. Physical, 45(1), 67-84.
|
-
[16]  |
Haghighi, H.S. and Markazi, A.H. (2009), Chaos Prediction and Control in MEMS Resonators, Elsevier B.V.
|
-
[17]  |
Zhang, W.M., Tabata, O., Tsuchiya, T., and Meng, G. (2011), Noise-induced cChaos in the Electrostatically Actuated MEMS Resonators, Elsevier B.V.
|
-
[18]  |
Song, Z.K. and Sun, K.B. (2013), Nonlinear and Chaos Control of a Micro-electro-mechanical System by using Second-order Fast Terminal Sliding Mode Control, Elsevier B.V.
|
-
[19]  |
Tusset, A.M., Balthazar, J.M., Rocha, R.T., Ribeiro, M.A., and Lenz, W.B. (2020), On suppression of chaotic motion
of a nonlinear MEMS oscillator, Nonlinear Dynamics, 99(1), 537-557.
|
-
[20]  |
Sabarathinam, S. and Thamilmaran, K. (2017), Implementation of analog circuit and study of chaotic dynamics in a
generalized Duffing-type MEMS resonator, Nonlinear Dynamics, 87(4), 2345-2356.
|
-
[21]  |
Maaita, J.O., Kyprianidis, I.M., Volos, C.K., and Meletlidou, E. (2013), The study of a nonlinear duffing-type oscillator driven by two voltage sources, Journal of Engineering Science and Technology Review,
6(4), 74-80.
|
-
[22]  |
Guo, Y., Luo, A.C.J., Reyes, Z., Reyes, A., and Goonesekere, R. (2019), On experimental periodic motions in a Duffing oscillatory circuit, J. Vibr. Test. Syst. Dyn, 3, 55-69.
|
-
[23]  |
Xu, Y. and Luo, A.C.J. (2020),Independent period-2 motions to chaos in a van der Pol-Duffing oscillator, International Journal of Bifurcation and Chaos, 30(15), 2030045.
|
-
[24]  |
Rajamani, S. and Rajasekar, S. (2017), Variation of response amplitude in parametrically driven single Duffing oscillator and unidirectionally coupled Duffing oscillators, Journal of Applied Nonlinear Dynamics, 6(1), 121-129.
|
-
[25]  |
Abirami, K., Rajasekar, S., and Sanjuan, M.A.F. (2016), Vibrational resonance in a system with a signum nonlinearity,
Discontinuity, Nonlinearity, and Complexity, 5(1), 43-58.
|
-
[26]  |
Skokos, Ch. (2010), The Lyapunov characteristic exponents and their computation. Dynamics of Small Solar System Bodies and Exoplanets, Springer, Berlin, Heidelber, 63-135.
|
-
[27]  |
Lichtenberg, A.J. and Lieberman, M.A., (2013), Regular and Stochastic Motions, 38, Springer Science and Business Media.
|
-
[28]  |
Stephen, W. (2013), Global Bifurcations and Chaos: Analytical Methods, Springer Science and Business Media.
|
-
[29]  |
Guckenheimer, J. and Holmes, P. (1983), Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer.
|