Discontinuity, Nonlinearity, and Complexity
Solution to Fractional Integro-differential Equation with Unknown Flux
on the Dirichlet Boundary
Discontinuity, Nonlinearity, and Complexity 11(4) (2022) 723--734 | DOI:10.5890/DNC.2022.12.010
Amel Labadla, Abderrazek Chaoui, Manal Djaghout
Department of Mathematics, Faculty of Sciences, University 8 May 1945,
B.P.401, 24000, Guelma, Algeria
Download Full Text PDF
Abstract
In this article, we prove the existence, uniqueness and some stability
results for fractional integro-differential equation of reconstruction of
the unknown time-dependent boundary function $\gamma \left( t\right) $ from
an additional integral measurement $\theta \left( t\right) =\int_{\Omega
}I^{1-\alpha }\left( u\left( t, x\right) \right) dx$ by the use of Rothe
time discretization. Numerical experiments are given to illustrate the
results.
References
-
[1]  |
Anh, V.V. and Leonenko, N.N. (2001), Spectral analysis of fractional kinetic equations withrandom data, J. Stat. Phys., 104, 1349-1387.
|
-
[2]  |
Metzler, R. and Klafter, J. (2000), The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1-77.
|
-
[3]  |
Chaoui, A. and Lakoud, A.G. (2015),
Solution to an integrodifferential equation with integral codition,
Appl. Math. comput., 266, 903-908.
|
-
[4]  |
Chaoui, A. and Rezgui, N. (2018), Solution to
fractional pseudoparabolic equation with fractional integral condition,
Rend. Circ. Mat. Palermo, II. Ser, 67(2),
205-213.
|
-
[5]  |
Bahuguna, D., Abbas, S., and Dabas, J. (2008),
Partial functional differential equation with an integral condition and
applications to population dynamics, Nonliear Analysis,
69 , 2623-2635.
|
-
[6]  |
El-Azab, M.S. (2007), Solution of nonlinear
transport diffusion problem by linearisation, Appl. Math.
Comput., 192, 205-215.
|
-
[7]  |
Petersson, L.E. and Kuliev, K.(2007),
An extension of rothe's method to non-cylindrical domains,
Application of Mathematics, 52(5), 365-389.
|
-
[8]  |
Bagley, R.L. (1983), Theorical basis for
the application of fractional calculus to viscoelasticity,
Journal of Rheology, 27(3) , 201-210.
|
-
[9]  |
Engeita, N. (1996), On fractional calculus and
fractional mulipoles in electromagnetism, IEEE Trans.,
44(4), 554-566.
|
-
[10]  |
Agrawl, O.P., Sabatier, J., and
Machado, J.A.T. (2007), Advances in fractional calculus,
Springer-Verlag.
|
-
[11]  |
Magin, R. (2004), Fractional calculus in
bioengeenering, Crit. Rev. Biom. Eng., 32(1), 1-104.
|
-
[12]  |
Mainardi, F. (1997), Fractal and
fractional calculus in cintinuum mechanics, Springer, New
York.
|
-
[13]  |
Nishimoto, K. (1990), Fractional calculus
and its applications, Nihon University, Koriyama.
|
-
[14]  |
Oldham, K.B. (2009), Fractional
differential equations in electrochemistry, Advances in
Engineering Software.
|
-
[15]  |
Podlubny, I. (1999), Fractional Differential Equations, Academic Press, San Diego.
|
-
[16]  |
Raheem, A. and Bahuguna, D. (2013), Existence and
uniqueness of solution for a fractional differential equation by Rothe
method, Nonl. Evol. Equ. Appl., 43(6),
43-54.
|
-
[17]  |
Oldham, K.B. and Spanier, J. (1974), The
fractional calculus, Academic press, New york.
|
-
[18]  |
Mainardi, F. and Paradisi, P. (1997), Model
of diffusion waves in viscoelasticity based on fractal calculus,
IEEE, New York, 4961-4966.
|
-
[19]  |
EL-Borai, M. (2002)., Some probability densities
and fundamental solutions of fractional evolution equations,
Chaos Solitons of fractals, 14 , 433-440.
|
-
[20]  |
Kacur, J. (1985), Method of roth in evolution
equations, Teubner Texte zur Mathematik, 80.
|
-
[21]  |
Evans, L.C. (1990), Weak convergence methods
for nonlinear partial differential equations, American
Mathematical Society, Providence, 74, 205-2015.
|