Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Anisotropic Magnetized Cloud String Universe with Hybrid Expansion Law

Discontinuity, Nonlinearity, and Complexity 11(2) (2022) 315--323 | DOI:10.5890/DNC.2022.06.010

T. Ramprasad$^{1}$, M. Kiran$^{1 }$, M.P.V.V. Bhaskara Rao$^{2}$

$^{1}$ Department of Mathematics, MVGR College of Engineering(A), Vizianagarm-535002, Andhra Pradesh, India

$^{2}$ Department of Basic Sciences and Humanities, Vignan's Institute of Information Technology (A),

Vishakhapatnam, Andhra Pradesh, India

Download Full Text PDF

 

Abstract

Anisotropic Bianchi type-III metric is studied with cloud strings and electromagnetic field in General Relativity. To get determinate solutions of field equations we have taken the help of (i) shear scalar proportional to scalar expansion proposed by Collins [1] and (ii) Hybrid expansion law proposed by Akarsu et al. [2]. We have obtained all the cosmological parameters corresponding to the model, also we have provided a physical discussion of our model using a graphical representation of these parameters. The physical and kinematical properties found in this model exhibit an accelerating expansion of the universe, which are compatible with current cosmological observations.

References

  1. [1]  Collins, C.B., Glass, E.N., and Wilkinson, D.A. (1983), Exact Spatially Homogeneous Cosmologies, Gen. Relativ. Gravit, 12, 805-823.
  2. [2] Akarsu, O., Kumar, S., Myrzakulov, R., Sami, M., and Xu, L., (2014), Cosmology with hybrid expansion law: scalar field reconstruction of cosmic history and observational constraints, J. Cosmol. Astropart. Phys, 01, 22.
  3. [3]  Einstein, A. (1916), Die grundlage der allgemeinen relativit\"{a}tstheorie, Ann. Phys.(Lpz.), 49, 769-822.
  4. [4]  Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., and Leibundgut, B.R.U.N.O. (1998), Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. , 116(3), 1009-1038.
  5. [5]  Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Nunes, N.J., Pain, R., Pennypacker, C.R., Quimby, R., Lidman, C., Ellis, R.S., Irwin, M., McMahon, R.G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B.J., Filippenko, A.V., Matheson, T., Fruchter, A.S., Panagia, N., Newberg, H.J.M., Couch, W.J., and The Supernova Cosmology Project (1999), Measurements of $\Omega $ and $\Lambda $ from 42 High-Redshift Superovae, Astrophys. J., 517, 565-586.
  6. [6]  Perlmutter, S., Aldering, G., Della Valle, M., Deustua, S., Ellis, R.S., Fabbro, S., Fruchter, A., Goldhaber, G., Groom, D.E., Hook, A., Kim, G., Kim, M.Y., Knop, R.A., Lidman, C., McMahon, R.G., Nugent, P., Pain, R., Panagia, N., Pennypacker, C.R., Ruiz-Lapuente, P., Schaefer, B., and Walton, N. (1998), Discovery of a supernova explosion at half the age of the Universe, Nature, 391, 51-54.
  7. [7]  Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Tucker, G.S., Weiland, J.L., Wollack, E., and Wright, E.L.(2013), First-Year Wilkinson Microwave Anisotropy Probe (WMAP)$^{1}$ Observations: Determination of Cosmological Parameters, Astrophys. J., 148, 175-194.
  8. [8]  Spergel, D.N., Bean, R., Dore, O., Nolta, M.R., Bennett, C.L., Dunkley, J., Hinshaw, G., Jarosik, N.E., Komatsu, E., Page, L., Peiris, H.V., Verde, L., Halpern, M., Hill, R.S., Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Tucker, G.S., Weiland, J.L., Wollack, E., and Wright, E.L. (2007), Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Cosmology, Astrophys. J., 170, 377-408.
  9. [9]  Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Spergel, D.N., Tucker, G.S., Wollack, E., Wright, E.L., Barnes, C., Greason, M.R., Hill, R.S., Komatsu, E., Nolta, M.R., Odegard, N., Peiris, H.V., Verde, L., and Weiland, J.L. (2003), First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl. Ser, 148, 1-27.
  10. [10]  Tegmark, M., Strauss, M.A., Blanton, M.R., Abazajian, K., Dodelson, S., Sandvik, H., Wang, X., Weinberg, D.H., Zehavi, I., Bahcall, N.A., Hoyle, F., Schlegel, D., Scoccimarro, R., Vogeley, M.S., Berlind, A., Budavari, T., Connolly, A., Eisenstein, D.J., Finkbeiner, D., Frieman, J.A., Gunn, J.E., Hui, L., Jain, B., Johnston, D., Kent, D., Lin, H., Nakajima, R., Nichol, R.C., Ostriker, J.P., Pope, A., Scranton, R., Sheth, U.R.K., Stebbins, A., Szalay, A.S., Szapudi, I., Xu, Y.Z., Annis, J., Brinkmann, J., Burles, S., Castander, F.J., Csabai, I., Loveday, J., Doi, J., Fukugita, M., Gillespie, B., Hennessy, G., Hogg, D.W., Knapp, Z.I.G.R., Lamb, D.Q., Lee, B.C., Lupton, R.H., McKay, T.A., Kunszt, P., Munn, J.A., Connell, L., Peoples, J., Pier, J.R., Richmond, M., Rockosi, C., Schneider, D.P., Stoughton, C., Tucker, D.L., Berk, D.E.V., Yanny, B., and York, D.G. (2004), Cosmological parameters from SDSS and WMAP, Phys. Rev. D., 69, 103501.
  11. [11]  Akarsu, \"{O}. and K\i l\i n\c{c}, C.B. (2010), LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter, Gen. Rel. Grav, 42, 119-140.
  12. [12]  Akarsu, \"{O}. and K\i l\i n\c{c}, C.B. (2010), Bianchi type III models with anisotropic dark energy, Gen. Rel. Grav, 42, 763-775.
  13. [13]  Amirhashchi, H., Zainuddin, H., and Saz, H.N., (2009), Geometrical Behaviors of LRS Bianchi Type-I Cosmological Model, E. J. Theor. Phys, 6(22), 79-84.
  14. [14]  Reddy, D.R.K., Rao, M.B., and Babu, K.S. (2014), Bianchi type-II Bulk viscous string cosmological model in self-creation theory of gravitation, Astrophys Space Sci., 351(1), 385.
  15. [15]  Hegazy, E.A. and Rahaman, F. (2019), Bianchi type VI$_{0}$ cosmological model in self-creation theory in general relativity and Lyra geometry, Indian J Phys, 93, 1643-1650.
  16. [16]  Pradhan, A., Amirhashchi, H., and Saha, B. (2011), Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter, Int. J. Theor. Phys, 50, 2923-2938.
  17. [17]  Rao, V.U.M., Vinutha, T., and Santhi, M.V. (2008), Bianchi type-V cosmological model with perfect fluid using negative constant deceleration parameter in a scalar tensor theory based on Lyra Manifold. Astrophys. Space Sci., 314, 213-216.
  18. [18] Sahoo, P.K. and Mishra, B. (2015), Higher-dimensional Bianchi type-III universe with strange quark matter attached to string cloud in general relativity, Turk J Phys., 39, 43-53.
  19. [19]  Sahu, S.K. and Kumar, T. (2013), Tilted Bianchi Type-I Cosmological Model in Lyra Geometry, Int. J. Theor. Phys., 52, 793-797.
  20. [20] Kiran, M., Reddy, D.R.K., and Rao, V.U.M. (2015), Bianchi type-III minimally interacting holographic dark energy model with linearly varying deceleration parameter in Brans-Dicke theory, Astrophys Space Sci., 360(54), DOI:10.1007/s10509-015-2563-5.
  21. [21]  Sahoo, P.K., Nath, A., and Sahu. S.K. (2017), Bianchi Type-III String Cosmological Model with Bulk Viscous Fluid in Lyra Geometry, Iran J Sci Technol Trans Sci, DOI:10.1007/s40995-017-0214-0.
  22. [22]  Vilenkin, A. (1981), Cosmic strings, Phys. Rev. D., 24, 2082.
  23. [23]  Stachel, J. (1980), Thickening the string. I. The string perfect dust, Phys. Rev. D., 21, 2171.
  24. [24]  Letelier, P.S. (1983), String cosmologies, Phys. Rev. D, Part. Fields, 28, 2414.
  25. [25]  Rao, M.B., Reddy, D.R.K., and Babu, K.S. (2015), Bianchi type-V bulk viscous string cosmological model in a self-creation theory of gravitation, Astrophys Space Sci., 359(2), 1-5.
  26. [26]  Singh, K.P., Mollah, M.R., Baruah, R.R., and Daimary, M. (2020), Interaction of Bianchi type-I anisotropic cloud string cosmological model universe with electromagnetic field, International Journal of Geometric Methods in Modern Physics, DOI:10.1142/S0219887820501339.
  27. [27]  Tripathi, B.R., Tyagi, A., and Parikh, S. (2014), Bianchi Type-I Inhomogeneous String Cosmological Model with Electromagnetic Field in General Relativity, Prespacetime J., 8(4), 474-483.
  28. [28]  Ram, S., Zeyauddin, M., and Singh, C.P. (2010), Anisotropic Bianchi type V perfect fluid cosmological models in Lyra's geometry, Journal of Geometry and Physics, 60, 1671-1680.
  29. [29]  Subramanian, K. (2016), The origin, evolution and signatures of primordial magnetic fields, Reports on Progress in Physics, 79(7), 076901(47pp).
  30. [30] , Kiran, Reddy, D.R.K., and Rao, V.U.M. (2015), Minimally interacting holographic Dark energy model in Brans-Dicke theory, Astrophys. Space Sci., 356, 407-411.