Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Abstract Hyperbolic Chaos

Discontinuity, Nonlinearity, and Complexity 11(1) (2022) 133--138 | DOI:10.5890/DNC.2022.03.011

Marat Akhmet

Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

Download Full Text PDF

 

Abstract

The abstract hyperbolic sets are introduced. Continuous and differentiable mappings as well as rate of convergence and transversal manifolds are not under discussion, and the symbolic dynamics paradigm is realized in a new way. Our suggestions are for more neat comprehension of chaos in the domain. The novelties can serve for revisited models as well as motivate new ones.

Acknowledgments

The author has been supported by 2247-A National Leading Researchers Program of TUBITAK, Turkey, N 120C138.

References

  1. [1]  Smale, S. (1966), Diffeomorphisms with many periodic points, Differential and Combinatorial Topology: A Symposium in Honor of Marston Morse, Princeton University Press, Princeton, 11(4), 63-70.
  2. [2]  Smale, S. (1967), Differentiable dynamical systems, Bulletin of the American Mathematical Society , 73(6), 747-817.
  3. [3]  Poincar{e}, H. (1957), New Methods of Celestial Mechanics Volume I-III, Dover Publications, New York, NY.
  4. [4]  Cartwright, M. and Littlewood, J. (1945), On nonlinear differential equations of the second order I: the equation $ y^{\prime\prime} - k(1-y^2)y^{\prime} + y = bk\cos(\lambda t +a),k $ large, Journal of the London Mathematical Society, 20, 180-189.
  5. [5]  Levinson, N. (1949), A second order differential equation with singular solutions, Annals of Mathematics, 50, 127-153.
  6. [6]  Adler, R., Konheim, A., and McAndrew, M. (1965), Topological entropy, Transactions of the American Mathematical Society, 114, 309-319.
  7. [7]  Bowen, R. (1970), Markov partitions for axiom A diffeomorphisms, American Journal of Mathematics, 92(3), 725-747.
  8. [8]  Bowen, R. (1970), Markov Partitions and Minimal Sets for Axiom A Diffeomorphisms, American Journal of Mathematics, 92(4), 907-918.
  9. [9]  Bowen, R. (1973), Symbolic Dynamics for Hyperbolic Flows, American Journal of Mathematics, 95(2) 429-440.
  10. [10]  Bowen, R. and Ruelle D. (1975), The Ergodic Theory of Axiom A Flows, Inventiones mathematicae, 29, 181-202.
  11. [11]  Bowen, R. (1975), A Horseshoe with Positive Measure, Inventiones mathematicae, 29, 203-204.
  12. [12]  Bunimovich, L. and Sinai, Ya. (1980), Markov Partitions for Dispersed Billiards, Communications in Mathematical Physics, 78(2), 247-280.
  13. [13]  Devaney, R.L. (1987), An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Menlo Park.
  14. [14]  Guckenheimer, J. and Holmes, P.J. (1997), Nonlinear oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York.
  15. [15]  Eckmann, J.P. and Ruelle, D. (1985), Ergodic theory of chaos and strange attractors, Reviews of Modern Physics, 57, 617-656.
  16. [16]  Newhouse, S. (1980), Lectures on Dynamical Systems, Progress in Mathematics, Birkhauser, New York.
  17. [17]  Ornstein, D. (1970), Bernoulli shifts with the same entropy are isomorphic, Advances in Mathematics, 4(3), 337-352.
  18. [18]  Ruelle, D. (1978), An inequality of the entropy of differentiable maps, Boletim da Sociedade Brasileira de Matem{atica - Bulletin/Brazilian Mathematical Society }, 9, 83-87.
  19. [19]  Wiggins, S. (1988), Global Bifurcation and Chaos: Analytical Methods, Springer-Verlag, New York, Berlin.
  20. [20]  Williams, S. (editor) (2004), Symbolic Dynamics and its Applications, Proceedings of Symposia in Applied Mathematics, American Mathematical Society, 60, San Diego California.
  21. [21]  Akhmet, M. (2019), Domain-structured chaos in discrete random processes, Arxiv e-prints, arXiv:1912.10478 (submitted).
  22. [22]  Akhmet, M. and Alejaily, E.M. (2019), Domain-Structured Chaos in a Hopfield Neural Network, International Journal of Bifurcation and Chaos, 29(14), Article number 1950205.
  23. [23]  Akhmet, M. and Alejaily, E.M. (2020), Abstract similarity, chaos and fractals, Discrete and Continuous Dynamical Systems Ser. B., 22, number 1531-3492\_2017\_11\_638, DOI:10.3934/dcdsb.2020191.
  24. [24]  Akhmet, M. and Fen, M.O. (2016), Poincar {e} chaos and unpredictable functions, Communications in Nonlinear Science and Numerical Simulation, 48, 85-94.
  25. [25]  Chen, G. and Huang, Y. (2011), Chaotic Maps: Dynamics, Fractals and Rapid Fluctuations, Synthesis Lectures on Mathematics and Statistics, Morgan and Claypool Publishers, Texas.
  26. [26]  Akhmet, M. (2009), Dynamical synthesis of quasi-minimal sets, Int. J. Bifurcat. Chaos, 19, 2423-2427.
  27. [27]  Akhmet, M. (2009), Shadowing and dynamical synthesis, Int. J. Bifurcat. Chaos, 19, 3339-3346.
  28. [28]  Akhmet, M. (2009), Devaney's chaos of a relay system, Commun. Nonlinear Sci. Numer. Simulat., 14, 1486-1493.
  29. [29]  Akhmet, M. (2009), Li-Yorke chaos in the system with impacts, J. Math. Anal. Appl., 351, 804-810.
  30. [30]  Akhmet, M., Akhmetova, Z., and Fen, M.O. (2016), Exogenous versus endogenous for chaotic business cycles, Discontinuity, Nonlinearity, and Complexity, 5(2), 101-119.
  31. [31]  Akhmet, M., Fen, M.O., and Kashkynbayev, A. (2017), Persistence of Li-Yorke chaos in systems with relay, Electron. J. Qual. Theory Differ. Equ., 72, 1-18.
  32. [32]  Akhmet, M., Feckan, M., Fen, M.O., and Kashkynbayev, A. (2018), Perturbed Li-Yorke homoclinic chaos, Electronic Journal of Qualitative Theory of Differential Equations, 75, 1-18.
  33. [33]  Akhmet, M. and Tola, A. (2020), Unpredictable Strings, Kazakh Math. J., 20(3), 16-22.