Discontinuity, Nonlinearity, and Complexity
first{Conditional Subgradient Method for Solving Nonsmooth Multi-Objective Optimization Problems}
Discontinuity, Nonlinearity, and Complexity 11(1) (2022) 125--132 | DOI:10.5890/DNC.2022.03.010
normalsize $^1$ Faculty of Applied Sciences - Ait Melloul, Ibn Zohr University.
IMI Laboratory - FSA, Morocco
$^2$ Laboratory of Engineering Systems and Information Technologies, ENSA - Ibn Zohr University, PO Box 1136,
Agadir, Morocco
Download Full Text PDF
Abstract
References
-
[1]  | Miettinen K. (1999), Nonlinear multiobjective optimization. Boston: Kluwer.
|
-
[2]  | Polyak, B.T. (1967), A general method for solving extremum problems, Soviet
Mathematics Doklady, 8, 593-597.
|
-
[3]  | Ermoliev, Y.M. (1996), Methods of solution of nonlinear extremal problems, Cybern. Syst.
Anal., 2, 1-14.
|
-
[4]  | Shor, N.Z. (1991), The development of numerical methods for
nonsmooth optimization in the USSR, in: J.K. Lenstra, A.H.G. Rinnoy
Kan and A. Schrijver (eds.), History of Mathematical Programming: A
Collection of Personal Reminiscences, North-Holland, Amsterdam,
135-139.
|
-
[5]  | Hu, Y., Yu, C.K.W., Li, C., and Yang, X. (2016), Conditional subgradient
methods for constrained quasi-convex optimization problems, J.
Nonlinear Convex Anal., 17, 2143-2158.
|
-
[6]  | Larsson, T. Patriksson, M., and Stromberg, A.B. (1996), Conditional
subgradient optimization---theory and applications,
Euro. J. Oper.
Res., 88, 382-403.
|
-
[7]  | Kiwiel, K.C. (2004), Convergence of approximate and incremental subgradient methods for convex optimization,
SIAM J. Optim., 14, 807-840.
|
-
[8]  | Hu, Y.H., Sim, C.K., and Yang, X.Q. (2015), A subgradient method based on gradient sampling for solving convex
optimization problems, Numer. Func. Anal. Opt., 36, 1559-1584.
|
-
[9]  | Bertsekas, D.P. (1999), Nonlinear Programming, Athena Scientific, Cambridge.
|
-
[10]  | Avriel, M. (2003), Nonlinear Programming: Analysis and Methods, Dover, New York.
|
-
[11]  | Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. (2013), Nonlinear
programming: theory and algorithms, John Wiley and Sons.
|
-
[12]  | Gutierez, J.M. (1984), D{\i}ez, Infragradients and directions of decrease,
Rev. Real Acad. Cienc. Exact. F{\iys. Natur. Madrid},
78, 523-532.
|
-
[13]  | Li, C. and Wang, J.H. (2006), Newton's method on Riemannian manifolds: Smale's
point estimate theory under the condition, IMA J. Numer. Anal.,
26(2), 228-251.
|
-
[14]  | Dem'janov, V.E. and Somesova, V.K. (1978),Conditional subdifferentials of convex functions, Soviet Mathematics Doklady
19, 1181-1185.
|
-
[15]  | Dem'yanov, V.E. and Somesova, V.K. (1980), Subdifferentials of functions on sets, Cybernetics, 16/I, 24-31.
|
-
[16]  | Xu, H., Rubinov, A.M., and Glover, B.M. (1999), lower subdifferentiability and applications, J. Aust. Math. Soc. Ser. B, Appl. Math., 40, 379-391.
|
-
[17]  | Burachik, R.S., Gran\~{a} Drummond, L.M., Iusem, A.N., and Svaiter, B.F. (1995), Full convergence of the steepest descent method with inexact line
search, Optimization, 32, 137-146.
|
-
[18]  | Gran\~{a} Drummond, L,M. and Svaiter, B.F. (2005), A steepest descent method for vector optimization,
Journal of Computational and Applied Mathematics,
175, 395-414.
|
-
[19]  | da Cruz Neto, J.X., da Silva, G.J.P., Ferreira, O.P., and Lopes, J.O. (2013), A
subgradient method for multiobjective optimization, Comput. Optim.
Appl., 54(3), 461-472.
% |
-
[20]  | Loridan, P. (1984), $\epsilon$-solutions in vector minimization problems, J.
%Optim. Theory Appl., 43(2), 265-276.
%
%
% |
-
[21]  | White, D. J. (1986), Epsilon effciency, J. Optim. Theory Appl.,
%49(2), 319-337.
%
% |
-
[22]  | Helbig, S. and Pateva, D. (1994), On several concepts for $\epsilon$-effciency,
%Operations-Research- Spektrum, 16(3), 179-186.
%
%
%
% |
-
[23]  | Dhara, A. and Dutta, J. (2011), Optimality conditions in convex optimization:
%a finite- dimensional view. CRC Press.
%
%
%
% |
-
[24]  | Azagra, D., Ferrera, J., and L{o}pez-Mesas, M. (2005), Nonsmooth analysis and Hamilton---Jacobi equations on Riemannian manifolds,
% J. Funct. Anal., 220,
% 304-361.
|