Discontinuity, Nonlinearity, and Complexity
Some New Results in the $q-$Calculus
Discontinuity, Nonlinearity, and Complexity 10(4) (2021) 755--763 | DOI:10.5890/DNC.2021.12.014
Jorge A. Castillo Medina , Salvador Cruz Garc 'ia, Juan E. N 'apoles Valdes, Thelma Galeana Moyaho
UAGro, Facultad de Matem'aticas, Acapulco, Gro, M'exico, ESAEp-UAEH Hidalgo, M'exico, UNNE, FaCENA, Corrientes, Argentina
Download Full Text PDF
Abstract
In this paper, we present some results for a fractional derivative of type $q$
uniform defined by the authors in a previous work, and which are
generalizations of known classical results of ordinary calculus.
References
-
[1]  | Kac, V. and Cheung, P. (2002),
Quantum Calculus, Springer-Verlag.
|
-
[2]  | N\{a}poles, V., Castillo Medina,
J.A., Guzm\{a}n, P.M., and
Lugo, L.M. (2019), A new local fractional derivative of q-uniform type,
Discontinuity, Nonlinearity, and Complexity, 8(1), 101-109.
|
-
[3]  | Mercer, P.R. (2002), On A Mean Value Theorem,
The College Mathematics Journal, 33(1), 46-48. JSTOR, www.jstor.org/stable/1558980. DOI:10.2307/1558980.
|
-
[4]  | Rajkovi\c, P., Stankovi\c, M., and Marinkovi\c, S. (2002), Mean Value Theorems in q-calculus, Matemati\cki Vesnik, 54(219), 171-178.
|
-
[5]  | Tong, J. (1999), The mean value theorems of Lagrange and Cauchy, Int. J.
Math. Educ. Sci. Technol., 30, 456-458.
|
-
[6]  | Tong, J. (2000), The mean value theorems of Lagrange and Cauchy (II),
Int. J. Math. Educ. Sci. Technol., 31(3), 447-449.
|
-
[7]  | Bosch, P., Gomez-Aguilar, J.F., Rodriguez, J.M., and Sigarreta, J.M. (2020), Analysis of Dengue fever outbreak by generalized fractional derivative, Fractals,
28(8), DOI:10.1142/S0218348X20400381.
|