Discontinuity, Nonlinearity, and Complexity
A Study of Approximation Properties of Beta Type Summation-Integral Operator
Discontinuity, Nonlinearity, and Complexity 10(4) (2021) 649--662 | DOI:10.5890/DNC.2021.12.006
Dhawal J. Bhatt$^{1,2}$, Vishnu Narayan Mishra$^{3}$ , Ranjan Kumar Jana$^{1}$
$^{1}$ Applied Mathematics and Humanities Department, Sardar Vallabhbhai National Institute of Technology,
Ichchhanath, Surat-395 007, Gujarat, India
$^{2}$ Present address: Department of Mathematics, St. Xavier's College, Navrangpura, Ahmedabad- 380 009,
Gujarat, India
$^{3}$ Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur-
484 887, Madhya Pradesh, India
Download Full Text PDF
Abstract
In the present paper we introduce Durrmeyer-type operator involving the beta function and Baskakov basis function and study its approximation properties. We obtain the rate of convergence in different terms. The uniform convergence of sequence of these operators is achieved using Korovkin's theorem. Order of approximation for functions of some special class is also obtained. We establish the Voronovskaja type asymptotic result for this operator and a direct estimate of approximation for sequence of these operator.
References
-
[1]  |
Sz{\a}sz, O. (1950), Generalizations of S. Bernstein`s polynomial to
the infinite interval, J. Res. Nat. Bur. Standards, {\bf{45}}, 239-245.
|
-
[2]  |
Baskakov, V.A. (1957), An example of a sequence of linear positive operators in the space of continuous functons, Dokl. Akad. Nauk. SSSR., {\bf{113}}, 249-251.
|
-
[3]  |
Durrmeyer, J.L. (1967), Une formule dinversion de la transform{\e}e de Laplace: Applications {\a} la th{\e}orie des moments, Th{\ese de 3e cycle, Facult{\e} des Sciences de IUniversit{\e} de Paris}.
|
-
[4]  |
Bernstein, S.N. (1912), Demonstration du Theorem de Weierstrass Fondee sur le Calculu des Probabilites, Comp. Comm. Soc. Mat. Charkow Ser., {\bf{13}}(2), 1-2.
|
-
[5]  |
Prasad, G., Agrawal, P.N., and Kasana, H.S. (1983), Approximation of functions on $[0,\infty)$ by a new sequence of modified Sz{\a}sz operators, Math. Forum, {\bf{6}}(2), 1-11.
|
-
[6]  |
Gupta, V. and Srivastava, G.S. (1993), Simultaneous approximation by Baskakov-Sz{\a}sz type operators, Bull. Math. Soc. Sci. de Roumanie (N.S.), {\bf{37(85)}}(3-4), 73-85.
|
-
[7]  |
Agrawal, P.N. and Mohammad, A.J. (2003), On $L_p$ approximation by a linear combination of a new sequence of linear positive operators, Turk. J. Math., {\bf{27}}, 389-405.
|
-
[8]  |
Gairola, A.R. and Mishra, L.N. (2016), Rate of Approximation by Finite Iterates of q-
Durrmeyer Operators, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. (April-June 2016),
{\bf 86}(2), 229-234. DOI:10.1007/s40010-016-0267-z.
|
-
[9]  |
Gairola, A.R. and Mishra, L.N. (2018), On the $q-$derivatives of a certain linear positive operators, Iranian Journal of Science \& Technology, Transactions A: Science, {\bf 42}(3), 1409-1417. DOI:10.1007/s40995-017-0227-8.
|
-
[10]  |
Gupta, V., Deo, N., and Zeng, X.M. (2013), Simultaneous approximation for Sz{\a}sz-Mirakian-Stancu-Durrmeyer operators, Anal. Theory Appl., {\bf{29}}(1), 86-96.
|
-
[11]  |
Gupta, V. and Gupta, P. (2001), Direct theorem in simultaneous approximation for Sz{\a}sz-Mirakyan-Baskakov type operators, Kyungpook Math. J., {\bf{41}}(2), 243-249.
|
-
[12]  |
Gupta, V. and Lupas, A. (2005), Direct results for mixed Beta-Sz{\a}sz type operators, Gen. Math., {\bf{13}}(2), 83-94.
|
-
[13]  |
Gupta, V. and Srivastava, G.S. (1995), On convergence of derivatives by Sz{\a}sz-Mirakyan-Baskakov type operators, Math. Stud., {\bf{64}}(1-4), 195-205.
|
-
[14]  |
Gupta, V. and Tachev, G. (2014), Approximation by Sz{\a}sz-Mirakyan-Baskakov operators, J. Appl. Funct. Anal., {\bf{9}}(3-4), 308-309.
|
-
[15]  |
Kumar, A. and Mishra, L.N. (2017), Approximation by modified Jain-Baskakov-Stancu operators, Tbilisi Mathematical Journal, {\bf 10}(2), 185-199.
|
-
[16]  |
Kumar, A., Tapiawala, D., and Mishra, L.N. (2018), Direct estimates for certain integral type Operators, European Journal of Pure and Applied Mathematics, {\bf 11}(4), 958-975.
|
-
[17]  |
Mishra, L.N. and Kumar, A. (2019), Direct estimates for Stancu variant of Lupa\c{s}-Durrmeyer operators based on Polya distribution, Khayyam J. Math., {\bf 5}(2), 51-64.
DOI:10.22034/KJM.2019.85886.
|
-
[18]  |
Mishra, V.N., Khatri, K., Mishra, L.N., and Deepmala (2013), Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications, 2013, 586. DOI:10.1186/1029-242X-2013-586.
|
-
[19]  |
Mishra, V.N., Khatri, K., and Mishra, L.N. (2013), Statistical approximation by Kantorovich type Discrete $q-$Beta operators, Advances in Difference Equations, 2013, 345.
DOI:10.1186/10.1186/1687-1847-2013-345.
|
-
[20]  |
Korovkin, P.P. (1953), On Convergence of Linear Positive Operators in the Space of Continuous Functions, Dokl. Akad. Nauk, {\bf{90}}, 961-964.
|
-
[21]  |
Mazhar, S.M. and Totik, V. (1985), Approximation by modified Sz{\a}sz operators, Acta Sci. Math., {\bf{49}}, 257-269.
|