Discontinuity, Nonlinearity, and Complexity
New relationship between Energy and Estrada Index
Discontinuity, Nonlinearity, and Complexity 10(4) (2021) 617--623 | DOI:10.5890/DNC.2021.12.003
Yalan Li$^1$, Bo Deng$^{2}$ , Chengfu Ye$^{2}$
$^1$ School of Computer, Qinghai Normal University, Xining 810001, China
$^{2}$ School of Mathematics and Statistics, Qinghai Normal University, Xining 810001, China
Download Full Text PDF
Abstract
Let $G$ be a graph on $n$ vertices, and let $\lambda_{1}, \cdots,\lambda_{n}$ be its eigenvalues. The energy $E(G)$ of a graph $G$ is defined as the sum of absolute values of the eigenvalues of $G$. The Estrada index of the graph $G$ is defined as $EE(G)=\sum ^{n} _{i=1}e^{\lambda_{i}}$. We get some new bounds for $EE(G)$. Some special inequalities are used to obtain the relationship between $E(G)$ and $EE(G)$.
References
-
[1]  |
{Brouwer, A.E. and Haemers, W.H.} (2012),
\newblock { Spectra of Graphs}.
|
-
[2]  |
{Cvetkovic, D., Rowlinson, P., and Simic, S.}
\newblock An introduction to the theory of graph spectra, spectral techniques.
|
-
[3]  |
Gutman, I. (2001),
\newblock The energy of a graph: Old and new results,
\newblock { Algebraic Combinatorics and Applications}.
|
-
[4]  |
Li, X., Shi, Y., and Gutman, I. (2012),
\newblock { Other Graph Energies},
\newblock Springer New York.
|
-
[5]  |
Nikiforov, V. (2016),
\newblock Beyond graph energy: Norms of graphs and matrices,
\newblock { Linear Algebra $\&$ Its Applications}, 506, 82-138.
|
-
[6]  |
Nikiforov, V. (2007),
\newblock The energy of graphs and matrices,
\newblock { Journal of Mathematical Analysis $\&$ Applications}, 326(2),
1472-1475.
|
-
[7]  |
Walikar, H.B., Ramane, H.S., and Hampiholi, P.R. (1999),
\newblock On the energy of a graph,
\newblock In { Graph Connections}.
|
-
[8]  |
Estrada, E. (2000),
\newblock Characterization of 3d molecular structure.
\newblock { Chemical Physics Letters}, 319(5-6), 713-718.
|
-
[9]  |
Estrada, E. (2002),
\newblock Characterization of the folding degree of proteins,
\newblock { Bioinformatics} 18(5), 697-704.
|
-
[10]  |
Estrada, E. (2004),
\newblock Characterization of the amino acid contribution to the folding degree
of proteins,
\newblock { Proteins-structure Function $\&$ Bioinformatics}, 54(4),
727-737.
|
-
[11]  |
Ginosar, Y., Gutman, I., Mansour, T., and Schork, M. (2008),
\newblock Estrada index and chebyshev polynomials,
\newblock { Chemical Physics Letters}, 454(4-6), 145-147.
|
-
[12]  |
Estrada, E. and Rodr\{\i}guez-Vel\azquez, J.A. (2005),
\newblock Spectral measures of bipartivity in complex networks,
\newblock { Phys. rev. e}, 72(4), 046105.
|
-
[13]  |
Estrada, E. and Rodr\{\i}guez-Vel\azquez, J.A. (2005),
\newblock Subgraph centrality in complex networks.
\newblock { Physical Review E Statistical Nonlinear $\&$ Soft Matter Physics},
71(5), 056103.
|
-
[14]  |
Shang, Y. (2012),
\newblock Biased edge failure in scale-free networks based on natural
connectivity,
\newblock { Indian Journal of Physics}, 86(6), 485-488.
|
-
[15]  |
Shang, Y. (2012),
\newblock Random lifts of graphs: Network robustness based on the estrada
index,
\newblock { Applied Mathematics E - Notes}, 12.
|
-
[16]  |
{Clemente, G.P. and Cornaro, A.} (2015),
\newblock Novel bounds for the normalized laplacian estrada and normalized
energy index of graphs,
\newblock { Mathematics Combinatorics}.
|
-
[17]  |
Carmona, J.R. and Rodr\{i}guez, J. (2019),
\newblock An increasing sequence of lower bounds for the estrada index of
graphs and matrices,
\newblock { Linear Alebra and its Applications},
580(3), 200-211.
|
-
[18]  |
Li, F., Liang, W., Zhao, H., Feng, H., and Ma, X. (2016),
\newblock On the estrada index of cactus graphs.
\newblock { Discrete Applied Mathematics}, 203(C), 94-105.
|
-
[19]  |
Zhou, H.Q. and Zhou, Q. (2012),
\newblock Laplacian estrada index of circulant graphs,
\newblock { Journal of Shaoyang University}.
|
-
[20]  |
Mudholkar, G.S., Freimer, M., and Subbaiah, P. (1984),
\newblock An extension of hiflders inequality,
\newblock { Journal of Mathematical Analysis $\&$ Applications}, 102(2).
|
-
[21]  |
Diaz, J.B. and Metcalf, F.T. (1963),
\newblock Stronger forms of a class of inequalities of g. p\{o}lya-g. szeg and l.
v. kantorovich,
\newblock { Bulletin of the American Mathematical Society}, 69(3),
415-419.
|
-
[22]  |
Dragomir, S.S. (2003),
\newblock A survey on cauchy-bunyakovsky-schwarz type discrete inequality,
\newblock { Journal of Inequalities in Pure $\&$ Applied Mathematics}, 4(3).
|