Discontinuity, Nonlinearity, and Complexity
Hamiltonian Perturbation Theory on a Lie Algebra.
Application to a non-autonomous Symmetric Top
Discontinuity, Nonlinearity, and Complexity 10(3) (2021) 347--367 | DOI:10.5890/DNC.2021.09.001
Lorenzo Valvo$^1$ , Michel Vittot$^2$
$^1$ Dipartimeno di Matematica,
Universita degli Studi di Roma Tor Vergata,
Via della Ricerca Scientifica 1
00133 Roma, Italy
$^2$ Aix Marseille Univ, Universite de Toulon, CNRS, CPT, Marseille, France
Download Full Text PDF
Abstract
We propose a perturbation algorithm
for Hamiltonian systems on a Lie algebra
$\mathbb{V}$, so that it can be applied
to non-canonical Hamiltonian systems.
Given a Hamiltonian system that preserves a
subalgebra $\mathbb{B}$ of $\mathbb{V}$, when
we add a perturbation the subalgebra $\mathbb{B}$
will no longer be preserved. We show how to
transform the perturbed dynamical system to
preserve $\mathbb{B}$ up to terms quadratic
in the perturbation. We apply this method to
study the dynamics of a non-autonomous
symmetric Rigid Body. In this example our
algebraic transform plays the role of
Iterative Lemma in the proof of a
KAM-like statement.
References
-
[1]  |
Arnold, V.I. (1989), { Mathematical {Methods} of {Classical}
{Mechanics}}. Graduate {Texts} in {Mathematics}, Springer-Verlag, 2 edn.
|
-
[2]  |
Morrison, P.J. (1982), Poisson brackets for fluid and plasmas, {
Mathematical {Methods} in {Hydrodynamics} and {Integrability} in {Dynamical}
{Systems}}, New York, vol.88, p.36, American Institute of Physics.
|
-
[3]  |
Sakurai, J.J. (2017), { Modern {Quantum} {Mechanics}}, Cambridge
University Press, 2nd edn.
|
-
[4]  |
Marsden, J.E., Morrison, P.J., and Weinstein, A.J. (1984), The {Hamiltonian}
structure of the {BBGKY} hierarchy equations. Marsden, J.E. (ed.), {
Fluids and plasmas: geometry and dynamics}, pp. 115-124, American
Mathematical Society.
|
-
[5]  |
Marsden, J.E., Montgomery, R., Morrison, P.J., and Thompson, W.B. (1986),
Covariant poisson brackets for classical fields, { Annals of Physics},
{\bf 169}, 29-47.
|
-
[6]  |
Littlejohn, R.G. (1982), Hamiltonian perturbation theory in noncanonical
coordinates. { Journal of Mathematical Physics}, {\bf 23}, 742-747.
|
-
[7]  |
Kolmogorov, A.N. (1954), On the preservation of conditionally periodic motions
for a small change in {Hamilton}s function, { Dokl. Akad. Nauk, SSSR},
{\bf 98}, 527-530.
|
-
[8]  |
Arnold, V.I. (1963), Proof of a theorem by {A}. {N}. {Kolmogorov} on the
persistence of quasi- periodic motions under small perturbations of the
{Hamiltonian}, { Russian Mathematical Survey}, {\bf 18}.
|
-
[9]  |
Moser, J. (1973), { Stable and {Random} {Motions} in {Dynamical} {Systems}:
{With} {Special} {Emphasis} on {Celestial} {Mechanics} ({AM}-77)},
Princeton University Press, rev - revised edn.
|
-
[10]  |
Bost, J.B. (1986), Tores invariants des syst\`{e}mes dynamiques hamiltoniens, {
Ast\{e}risque}, vol. 133-134, pp. 113-157.
|
-
[11]  |
DeLaLlave, R., Gonz\{a}lez, A., Jorba, A., and Villanueva, J. (2005), {KAM}
theory without action-angle variables, { Nonlinearity}, {\bf 18},
855-895.
|
-
[12]  |
Li, Y. and Yi, Y. (2002), Persistence of invariant tori in generalized
{Hamiltonian} systems, { Ergod. Th. Dynam. Sys.}, {\bf 22}.
|
-
[13]  |
Alishah, H. and DeLaLlave, R. (2012) Tracing {KAM} {Tori} in {Presymplectic}
{Dynamical} {Systems}, { Journal of Dynamics and Differential
Equations}, {\bf 24}, 685-711.
|
-
[14]  |
Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M. (1984), A proof of
{Kolmogorov}s theorem on invariant tori using canonical transformations
defined by the {Lie} method. { Il Nuovo Cimento B (1971-1996)}, {\bf
79}, 201-223.
|
-
[15]  |
DeLaLlave, R. (2001), A tutorial on {KAM} theory, { Smooth ergodic {Theory}
$\&$ its applications}, Providence, vol.69, pp. 175-292, American Math
Society.
|
-
[16]  |
Broer, H.W. (2004), {KAM} theory: {The} legacy of {Kolmogorov}s 1954 paper.
{ Bulletin of the American Mathematical Society}, {\bf 41}, 507-522.
|
-
[17]  |
F\{e}joz, J. (2016), Introduction to {KAM} theory with a view to celestial
mechanics. Bergounioux, M., Peyr\{e}, G., Schn\"{o}rr, C., Caillau, J.-B., and
Haberkorn, T. (eds.), { Variational {Methods}}, De Gruyter.
|
-
[18]  |
Vittot, M. (2004), Perturbation {Theory} and {Control} in {Classical} or
{Quantum} {Mechanics} by an {Inversion} {Formula}, { Journal of Physics A:
Mathematical and General}, {\bf 37}, 6337-6357, arXiv: math-ph/0303051.
|
-
[19]  |
Marsden, J.E. and Ratiu, T.S. (2013), { Introduction to mechanics and
symmetry: a basic exposition of classical mechanical systems}, vol.17.
Springer Science \& Business Media.
|
-
[20]  |
Reed, M. and Simon, B. (1981), { Functional {Analysis}, {Volume} 1}.
Academic Press.
|
-
[21]  |
Giorgilli, A. (1995), Quantitative {Methods} in {Classical} {Perturbation}
{Theory}, { From {Newton} to chaos: modern techniques for understanding
and coping with chaos in {N}-body dynamical system}, pp. 21-38, Plenum
Press, a.e. roy e b.d. steves edn.
|
-
[22]  |
Deprit, A. (1967), Free {Rotation} of a {Rigid} {Body} {Studied} in the {Phase}
{Plane}, { American Journal of Physics}, {\bf 35}, 424-428.
|
-
[23]  |
Gurfil, P., Elipe, A., Tangren, W., and Efroimsky, M. (2007), The
{Serret}-{Andoyer} {Formalism} in {Rigid}-{Body} {Dynamics}: {I}.
{Symmetries} and {Perturbations}, { Regular and Chaotic Dynamics}, {\bf
12}, 389-425.
|
-
[24]  |
Arnold, V.I. (1963) Small {Denominators} and problems of stability of motion
in {Classical} and {Celestial} {Mechanics}, { Russ. Math. Surv.}, {\bf
18}, 85.
|
-
[25]  |
Pinzari, G. and Chierchia, L. (2010), Properly-degenerate {KAM} theory
(following {V}. {I}. {Arnold}). { Discrete and Continuous Dynamical
Systems - Series S}, {\bf 3}, 545-578.
|