Discontinuity, Nonlinearity, and Complexity
The Global Attractiveness of the Fixed Point of a Gonosomal Evolution Operator
Discontinuity, Nonlinearity, and Complexity 10(1) (2021) 143--149 | DOI:10.5890/DNC.2021.03.010
Akmal T. Absalamov
Samarkand State University,
Boulevard str., 140104,
Samarkand, Uzbekistan
Download Full Text PDF
Abstract
In the paper we prove a conjecture
of U.A. Rozikov and R. Varro about globally attractiveness of a
unique nonhyperbolic fixed point of the normalized gonosomal
evolution operator of a sex linked inheritance.
References
-
[1]  | Baca\"er, N. (2011), A short history of mathematical population dynamics, Springer-Verlag London, Ltd., London.
|
-
[2]  |
Ganikhodzhaev, R.N., Mukhamedov, F.M., and Rozikov, U.A. (2011), { Quadratic
stochastic operators and processes: results and open problems},
Inf. Dim. Anal. Quant. Prob. Rel. Fields, 14(2), 279-335
|
-
[3]  | Kesten, H. (1970), Quadratic transformations: A model for population growth, I, II, Adv.
Appl. Probab., 2(2), 1-82; 179-228.
|
-
[4]  |
Lyubich Y.I. { Mathematical structures in population genetics}.
Springer-Vergar, Berlin (1992)
|
-
[5]  |
Rozikov, U.A. (2013), { Evolution operators and algebras of sex linked
inheritance,} Asia Pacific Math. Newsletter, 3(1), 6-11.
|
-
[6]  |
Varro, R. (2016), { Gonosomal algebra,} Jour. Algebra, 447,
1-30.
|
-
[7]  |
Ladra, M. and Rozikov, U.A. (2013), { Evolution algebra of a bisexual
population}, Jour. Algebra, 378, 153-172.
|
-
[8]  |
Reed, M.L. (1997), { Algebraic structure of genetic inheritance,}
Bull. Amer.
Math. Soc. (N.S.), 34(2), 107-130.
|
-
[9]  |
Rozikov, U.A. and Zhamilov, U.U. (2011), {Volterra quadratic stochastic
operators of bisexual population,} Ukraine Math. Jour., 63(7),
985-998.
|
-
[10]  |
Absalamov, A.T. and Rozikov U.A. (2020), The dynamics of gonosomal evolution operators, Jour. Applied Nonlinear Dynamics, 9(2), 247-257.
|
-
[11]  |
Rozikov, U.A. and Varro R. (2016), { Dynamical systems generated by a gonosomal
evolution operator,} Discontinuity, Nonlinearity and Complexity,
5, 173-185
|