Discontinuity, Nonlinearity, and Complexity
        
        
        
        
        
            The Global Attractiveness of the Fixed Point of a Gonosomal Evolution Operator
        
         
                 Discontinuity, Nonlinearity, and Complexity 10(1) (2021) 143--149 | DOI:10.5890/DNC.2021.03.010
            
            
             Akmal T. Absalamov 
        
          Samarkand State University,
Boulevard str., 140104,
Samarkand, Uzbekistan
            Download Full Text PDF
        
         
        Abstract
        
             In the paper we prove a conjecture
of U.A. Rozikov and R. Varro about globally attractiveness of a
unique nonhyperbolic fixed point of the normalized gonosomal
evolution operator of a sex linked inheritance. 
                           
        
        References
        
        -  | [1]  | Baca\"er, N. (2011), A short history of mathematical population dynamics, Springer-Verlag London, Ltd., London. |  
 
-  | [2]  | Ganikhodzhaev, R.N.,  Mukhamedov, F.M., and  Rozikov, U.A. (2011),  { Quadratic
stochastic operators and processes: results and open problems},
Inf. Dim. Anal. Quant. Prob. Rel. Fields, 14(2),  279-335 |  
 
-  | [3]  | Kesten, H. (1970), Quadratic transformations: A model for population growth, I, II, Adv.
Appl. Probab., 2(2), 1-82; 179-228. |  
 
-  | [4]  | Lyubich Y.I. { Mathematical structures in population genetics}.
Springer-Vergar, Berlin (1992) |  
 
-  | [5]  | Rozikov, U.A. (2013), { Evolution operators and algebras of sex linked
inheritance,} Asia Pacific Math. Newsletter, 3(1), 6-11. |  
 
-  | [6]  | Varro, R. (2016), { Gonosomal algebra,} Jour. Algebra, 447,
1-30. |  
 
-  | [7]  | Ladra, M. and   Rozikov, U.A. (2013),  { Evolution algebra of a bisexual
population}, Jour. Algebra, 378,  153-172. |  
 
-  | [8]  | Reed, M.L. (1997), { Algebraic structure of genetic inheritance,}
Bull. Amer.
Math. Soc. (N.S.), 34(2),  107-130. |  
 
-  | [9]  | Rozikov, U.A. and  Zhamilov, U.U. (2011), {Volterra quadratic stochastic
operators of bisexual population,} Ukraine Math. Jour., 63(7),
 985-998. |  
 
-  | [10]  | Absalamov, A.T. and Rozikov U.A. (2020), The dynamics of gonosomal evolution operators, Jour. Applied Nonlinear Dynamics, 9(2), 247-257. |  
 
-  | [11]  | Rozikov, U.A. and  Varro R. (2016), { Dynamical systems generated by a gonosomal
evolution operator,} Discontinuity, Nonlinearity and Complexity,
 5, 173-185 |