Discontinuity, Nonlinearity, and Complexity
Non-Autonomous Dynamics and Product Formula Approximation of Solution Operator
Discontinuity, Nonlinearity, and Complexity 9(4) (2020) 579--590 | DOI:10.5890/DNC.2020.12.011
Valentin A. Zagrebnov
Institut de Math'{e}matiques de Marseille - AMU,
CMI - Technop^{o}le Ch^{a}teau-Gombert,
39 rue F. Joliot Curie, 13453 Marseille, France
Download Full Text PDF
Abstract
The paper is devoted to non-autonomous dynamics, which is generated by
positive self-adjoint operator $A$ and a family of non-negative self-adjoint operators
$\{B(t)\}_{t\geq 0}$ defined in a separable Hilbert space.
It is shown that solution operator $\{U(t,s)\}_{0 \leq s \leq t}$ of the evolution equation
can be approximated in the operator norm topology by a product formula that involves
$A$ and $B(t)$. We also established the rate of convergence of the product formula to the
solution operator. These results are proved using the evolution semigroup approach
to non-autonomous dynamics.
References
-
[1]  |
Kato, T. (1961),
Abstract evolution equation of parabolic type in Banach and Hilbert spaces,
{ Nagoya Math. J.}, 19, 93-125.
|
-
[2]  |
Yagi, A. (1990),
Parabolic evolution equation in which the coefficients are the generators
of infinitly differentiable semigroups, II,
{ Funkcialaj Ekvacioj}, 33, 139-150.
|
-
[3]  |
Ichinose, T. and Tamura, H. (1998),
Error estimate in operator norm of exponential product formulas for
propagators of parabolic evolution equations,
{ Osaka J. Math.}, 35(4), 751-770.
|
-
[4]  |
Nagel, R. and Nickel, G. (2002),
Well-poseness of nonautonomous abstract {C}auchy problems,
{ {Progr. Nonlinear Diff.Eqn. and Their Appl.}}, 50, 279-293.
|
-
[5]  |
Neidhardt, H., Stephan, A., and Zagrebnov, V.A. (2017),
{On convergence rate estimates for approximations of solution
operators for linear non-autonomous evolution equations,}
{ {Nanosyst., Phys. Chem. Math.}}, 8(2), 202-215.
|
-
[6]  |
Neidhardt, H., Stephan, A., and Zagrebnov, V.A. (2018),
{Remarks on the operator-norm convergence of the
Trotter product formula},
{ {Int. Eqn. Oper. Theory}}, 90, 1-15.
|
-
[7]  |
Neidhardt, H., Stephan, A., and Zagrebnov, V.A. (2020),
{Convergence rate estimates for Trotter product approximations of
solution operators for non-autonomous Cauchy problems},
{Publ. RIMS Kyoto Univ.}, 56, 83-135.
|
-
[8]  |
Nickel, G. (2000),
Evolution semigroups and product formulas for
nonautonomous {C}auchy problems,
{ Math. Nachr}, 212, 101-116,.
|
-
[9]  |
Evans, D.E. (1976),
Time dependent perturbations and scattering of strongly continuous
groups on {B}anach spaces,
{ Math. Ann.}, 221(3), 275-290.
|
-
[10]  |
Howland, J.S. (1974),
Stationary scattering theory for time-dependent {H}amiltonians.
{ Math. Ann.}, 207, 315-335.
|
-
[11]  |
Neidhardt, H. (1981),
On abstract linear evolution equations, {I},
{ Math. Nachr.}, 103, 283-298.
|
-
[12]  |
Monniaux, S. and Rhandi, A. (2000),
Semigroup method to solve non-autonomous evolution equations,
{ {Semigroup Forum}}, 60, 122-134.
|
-
[13]  |
Neidhardt, H. and Zagrebnov, V.A. (2009),
Linear non-autonomous {C}auchy problems and evolution semigroups,
{ Adv. Differential Equations}, 14(3-4), 289-340.
|
-
[14]  |
Arendt, W., Chill, R., Fornaro, S., and Poupaud, C. (2007),
{$L^p$}-maximal regularity for non-autonomous evolution equations,
{ J. Differential Equations}, 237(1), 1-26.
|
-
[15]  |
Neidhardt, H. (1979),
{ {Integration of Evolutionsgleichungen mit Hilfe von
Evolutionshalbgruppen}}.
Dissertation, AdW der DDR.
Berlin.
|
-
[16]  |
Trotter, H.F. (1959),
On the product of semi-groups of operators,
{ Proc. Amer. Math. Soc.}, 10, 545-551.
|
-
[17]  |
Ichinose, T., Tamura, H., Tamura, H., and Zagrebnov, V.A. (2001),
Note on the paper: ``{T}he norm convergence of the {T}rotter-{K}ato
product formula with error bound'' by {T}. {I}chinose and {H}. {T}amura.
{ Comm. Math. Phys.}, 221(3), 499-510.
|
-
[18]  |
Kato. T. (1980),
{ Perturbation theory for linear operators},
Classics in Mathematics, Springer-Verlag, Berlin, 1995,
Reprint of the 1980 edition.
|