Discontinuity, Nonlinearity, and Complexity
Lax Equation on the Uhlenbeck Manifold
Discontinuity, Nonlinearity, and Complexity 9(4) (2020) 509--518 | DOI:10.5890/DNC.2020.12.003
Ya. Dymarskii
Department of Higher Mathematics, Moscow Institute of Physics and Technology,
Dolgoprudny, Russia
Download Full Text PDF
Abstract
We give an analytic and topological description of the Uhlenbeck manifold, that is a manifold of triples (a symmetric operator, an eigenvector, an eigenvalue), for the finite-dimensional symmetric matrices and the family of stationary periodic Schrodinger operators. Then, we describe an uplifting of Lax vector fields to these manifolds.
References
-
[1]  |
Uhlenbeck, K. (1976), Generic properties of eigenfunctions,
Amer. J. Math., 98(4), 1059-1078.
|
-
[2]  |
Vishik, M.I. and Kuksin, S.B. (1985), Quasilinesr elliptic equations and Fredholm manifolds,
Vestn. MGU, Ser. 1 Mat. Meckh., (6), 23-30.
|
-
[3]  |
Dymarskii, Y.M. (1985), Existence, oscillatory properties, and asymptotics of normed eigenfunctions of nonlinear boundary-value problems,
Qualitative and Approximate Methods for Studying Operator Equations,
Yaroslavl' state university, 133--139.
|
-
[4]  |
Dymarskii, Y.M. (2008), Manifold method in eigenvector theory of nonlinear operators,
Journal of Mathematical Sciences, 154(5), 655--815.
|
-
[5]  |
Dymarskii, Y.M. and Evtushenko, Y.A. (2016), Foliation of the space of periodic boundary-value problems by hypersurfaces corresponding
to fixed lengths of the nth spectral lacuna,
Sbornik: Mathematics, 207(5), 678--701.
|
-
[6]  |
Lax, P. (1968), Integrals of nonlinear equations of evolution and solitary waves,
Comm. Pure Applied Math., 21(5), 467--490.
|
-
[7]  |
Ablowitz, P. and Segur, H. (1981),
Solitons and the inverse scattering transform, SIAM: Philadelphia.
|
-
[8]  |
Arnold, V.I. (1972), Modes and quasimodes,
Funkts. Anal. Pril., 6(2), 94--101.
|
-
[9]  |
Coddington, E.A. and Levinson, N. (1955),
Theory og Ordinary Differential Equations, McGraw-Hill: New York.
|