Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Homoclinic Solutions in Bazykin’s Predator-Prey Model

Discontinuity, Nonlinearity, and Complexity 9(3) (2020) 339--350 | DOI:10.5890/DNC.2020.09.001

Bashir Al-Hdaibat

Department of Mathematics, Hashemite University, Zarqa 131333, P.O. Box 330127, Jordan

Download Full Text PDF

 

Abstract

In this paper we derive an explicit second-order approximation of the homoclinic solutions in the Bazykin’s predator-prey model. The analytic solutions are compared with those obtained by numerical continuation.

Acknowledgments

This work was supported by the Hashemite University under Grant NO. 49-36-2017. The author would like to thank the referees for the useful suggestions that have substantially improved the quality of the paper.

References

  1. [1]  Bazykin, A.D. (1976), Structural and dynamic stability of model predator-prey systems, IIASA Research Memorandum, Laxenburg, Austria.
  2. [2]  Bazykin, A.D., Khibnik, A.I., and Krauskopf, B. (1998), Nonlinear Dynamics of Interacting Populations, World Scientific, London, UK.
  3. [3]  Yur’evna, R.G. (2013) Mathematical models in biophysics and ecology, Technical report, Institute of Computer Science, Moscow-Izhevsk, Russia.
  4. [4]  Kuznetsov, Yu.A (2004), Elements of Applied Bifurcation Theory, Springer-Verlag, New York, 3rd edition.
  5. [5]  Kuznetsov, Yu.A (2011), Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, International Journal of Bifurcation and Chaos, 15(11), 3535-3546.
  6. [6]  McGehee, E.A., Schutt, N., Vasquez, D.A., and Peacock-Lopez, E. (2008), Bifurcations, and temporal and spatial patterns of a modified Lotka-Volterra model, International Journal of Bifurcation and Chaos, 18(8), 2223-2248.
  7. [7]  Banerjee,M., Ghorai, S., andMukherjee N. (2017), Approximated spiral and target patterns in Bazykin’s prey-predator model: Multiscale perturbation analysis, International Journal of Bifurcation and Chaos, 27(3), 1750038.
  8. [8]  Brauer, F. and Soudack, A.C. (1979), Stability regions and transition phenomena for harvested predator-prey systems, Journal of Mathematical Biology, 7(4), 319-337.
  9. [9]  Xiao, D. and Ruan, S. (1999), Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting, Fields Inst. Commun., 21, 493-506.
  10. [10]  Sarwardi, S., Haque,M., andMandal, P.K. (2012), Ratio-dependent predator-preymodel of interacting population with delay effect, Nonlinear Dynamics, 69(3), 817-36.
  11. [11]  Freedman, H.I. andWolkowicz, G.S.K. (1986), Predator-prey systems with group defense: The paradox of enrichment revisited, Bull. Math. Biol., 48, 493-508.
  12. [12]  Wolkowicz, G.S.K. (1988), Bifurcation analysis of a predator-prey system involving group defense, SIAM J. Appl. Math., 48, 592-606.
  13. [13]  Mischaikow, K. andWolkowicz, G.S.K. (1990), A predator-prey system involving group defense: A connection matrix approach, Nonlin. Anal., Theory, Methods & Applications, 14, 955-969.
  14. [14]  Ruan, S. and Xiao, D. (2001), Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61, 1445-1472.
  15. [15]  Zhu, H., Campbell, S.A., and Wolkowicz, G.S.K.b (2002), Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63, 636-682.
  16. [16]  Xiao, D. and Jennings, L. (2005), Bifurcations of a ratio-dependent predator-prey system with constant rate harvesting, SIAM J. Appl. Math., 65, 737-753.
  17. [17]  Leard, B., Lewis C., and Rebaza, J. (2008), Dynamics of ratio-dependent predator-prey models with nonconstant harvesting. Discrete Contin. Dyn. Syst. Ser. S, 48, 303-315.
  18. [18]  Peng, G.J., Jiang, Y.L., and Li, C.P. (2009), Bifurcations of a Holling-type II predator-prey system with constant rate harvesting, International Journal of Bifurcation and Chaos, 19(8), 2499-2514.
  19. [19]  Lenzini, P. and Rebaza, J. (2010), Nonconstant predator harvesting on ratio-dependent predator-prey models. Appl. Math. Sci., 4,791-803.
  20. [20]  Wang, H., Zhang, H., Sun, Y., and Pang, Y. (2015), Analysis of a Holling II system with frequency-dependent fitnessand constant harvesting rate of prey. Nonlinear Analysis and Differential Equations, 3(4), 155-165.
  21. [21]  Al-Hdaibat, B., Govaerts, W., Kuznetsov, Y.A., and Meijer, H.G.E. (2016), Initialization of homoclinic solutions near Bogdanov-Takens points: Lindstedt-Poincaré comparedwith regular perturbationmethod, SIAMJ. Applied Dynamical Systems, 15(2), 952-980.
  22. [22]  Arnold, V.I. (1983), Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, Heidelberg, Berlin.
  23. [23]  Guckenheimer, J. and Holmes, P. (1983) NonlinearOscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag, New York.
  24. [24]  Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E., and Sautois, B. (2008), New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14(2):147-175.
  25. [25]  De Witte, V., Govaerts, W., Kuznetsov, Y.A., and Friedman, M. (2012), Interactive initialization and continuation of homoclinic and heteroclinic orbits in MATLAB, ACM Trans. Math. Software, 38(3), 1-34.
  26. [26]  Kuznetsov, Y.A. (2005), Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, International Journal of Bifurcation and Chaos, 15(11), 3535-3546.
  27. [27]  Kuznetsov, Y.A., Meijer, H.G.E., Al-Hdaibat, B., and Govaerts, W. (2015), Accurate approximation of homoclinic solutions in Gray-Scott kinetic model, International Journal of Bifurcation and Chaos, 25(09), 1550125.
  28. [28]  Kuznetsov, Y.A., Meijer, H.G.E., Al-Hdaibat, B., and Govaerts, W. (2014), Improved homoclinic predictor for Bogdanov-Takens bifurcation, International Journal of Bifurcation and Chaos, 24(4), 1450057.
  29. [29]  Nayfeh, A.H. (1993), Introduction to Perturbation Techniques, John Wiley & Sons, Inc., Canada.
  30. [30]  Al-Hdaibat, B. (2015), Computational Dynamical Systems Analysis: Bogdanov-Takens Points and an EconomicModel, PhD thesis, Ghent University, Belgium.