Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


A Mathematical Model for Vineyard Replacement with Nonlinear Binary Control Optimization

Discontinuity, Nonlinearity, and Complexity 9(2) (2020) 173--186 | DOI:10.5890/DNC.2020.06.001

Aníbal Galindro$^{1}$, Adelaide Cerveira$^{2}$, Delfim F. M. Torres$^{3}$, João Matias$^{4}$, AnaMarta-Costa$^{1}$

$^{1}$ Centre for Transdisciplinary Development Studies, University of Tr´as-os-Montes and Alto Douro, Polo II–ECHS, Quinta de Prados, 5000-801 Vila Real, Portugal

$^{2}$ INESC-TEC, Department of Mathematics, University of Tr´as-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal

$^{3}$ Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

$^{4}$ CMAT-UTAD, Department of Mathematics, University of Tr´as-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal

Download Full Text PDF

 

Abstract

Vineyard replacement is a common practice in every wine-growing farm since the grapevine production decays over time and requires a new vine to ensure the business sustainability. In this paper, we formulate a simple discrete model that captures the vineyard’s main dynamics such as production values and grape quality. Then, by applying binary non-linear programming methods to find the vineyard replacement trigger, we seek the optimal solution concerning different governmental subsidies to the target producer.

Acknowledgments

This work was supported by the R&D Project INNOVINE & WINE – Vineyard and Wine Innovation Platform – Operation NORTE-01-0145-FEDER-000038, co-funded by the European and Structural Investment Funds (FEDER) and by Norte 2020 (Programa Operacional Regional do Norte 2014/2020). Torres was supported by FCT through CIDMA, project UIDB/04106/2020. The authors are very grateful to two anonymous Reviewers for several suggestions, questions and remarks, which helped them to improve the paper.

References

  1. [1]  International Organisation of Vine and Wine (OIV) (2017), World Vitivniculture Situation, OIV Statistical Report on World Vitiviniculture, http://www.oiv.int/public/medias/5479/oiv-en-bilan-2017.pdf, accessed 2018-05-15.
  2. [2]  Marta-Costa, A. (2010), Application of decision support methods for sustainable agrarian systems, New Medit, 9(2), 42-49.
  3. [3]  Marta-Costa, A., Martinho, V., and Santos, M. (2017), Productive efficiency of Portuguese vineyard regions, Regional Science Inquiry, 9(3), 97-107.
  4. [4]  France, J. and Thornley, J. (1984), Mathematical Models in Agriculture, Butterworths, London.
  5. [5]  Matsuyama, K. (1992), Agricultural productivity, comparative advantage, and economic growth, Journal of Economic Theory, 58(2), 317-334.
  6. [6]  Santos, J.G. and Cândido, G.A. (2013), Sustentabilidade e agricultura familiar: um estudo de caso em uma associação de agricultores rurais, Revista de Gest˜ão Social e Ambiental, 7(1), 70-86.
  7. [7]  Masini, G., Petracci, N., and Bandoni, A. (2003), Supply chain planning optimization in the fruit industry, Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003), 237-240.
  8. [8]  Troncoso, J.J. and Garrido, R.A. (2005), Forestry production and logistics planning: an analysis using mixed-integer programming, Forest Policy and Economics. 7, 625-633.
  9. [9]  Fonseca, T.F., Cerveira, A., and Mota, A. (2012), An integer programming model for a forest harvest problem in Pinus pinaster stands, Forest Systems, 21(2), 272-283.
  10. [10]  Jena, S.D. and Poggi,M. (2013), Harvest planning in the Brazilian sugar cane industry via mixed integer programming, European Journal of Operational Research, 230, 374-384.
  11. [11]  Ferrer, J.C., Cawley, A.M., Maturana, S., Toloza, S., and Vera, J. (2008), An optimization approach for scheduling wine grape harvest operations, Int. J. Production Economics, 112, 985-999.
  12. [12]  Marta-Costa, A., Manso, F., Tibério, L., and Fonseca, C. (2013), Methods and procedures for building sustainable farming systems, Springer, Dordrecht, 207-217.
  13. [13]  Groot, J.C.J., Oomen, G.J.M., and Rossing, W.A.H. (2012), Multi-objective optimization and design of farming systems, Agricultural Systems, 110, 63-77.
  14. [14]  Klein, T., Holzkamper, A., Calanca, P., Seppelt, R., and Fuhrer, J. (2013), Adapting agricultural land management to climate change: a regional multi-objective optimization approach, Landscape Ecol., 28, 2029-2047.
  15. [15]  Banasik, A., Kanellopoulos, A., Claassen, G.D.H., Bloemhof-Ruwaard, J.M., and van der Vorst, J.G.A.J. (2017), Closing loops in agricultural supply chains using multi-objective optimization: A case study of an industrial mushroom supply chain, Int. J. Production Economics, 183, 409-420.
  16. [16]  Millar, J.G., Daane, K.M., Mcelfresh, J.S., Moreira, J.A, Malakar-Kuenen, R., Guill´en, M., and Bentley, W.J. (2002), Development and Optimization of Methods for Using Sex Pheromone for Monitoring the Mealybug Planococcus ficus (Homoptera: Pseudococcidae) in California Vineyards, Journal of Economic Entomology, 95(4), 706-714.
  17. [17]  García-Díaz, A., Allas, R.B., Gristina, L., Cerdà, A., Pereira, P., and Novara, A. (2016), Carbon input threshold for soil carbon budget optimization in eroding vineyards, Geoderma, 271, 144-149.
  18. [18]  Patakas, A., Noitsakis, B., and Chouzouri, A. (2005), Optimization of irrigation water use in grapevines using the relationship between transpiration and plant water status, Agriculture, Ecosystems and Environment, 106, 253-259.
  19. [19]  Atallah, S.S., Gómez, M.I., Fuchs, M.F. and Martinson, T.E. (2011), Economic impact of grapevine leafroll disease on vitis vinifera cv. cabernet, Working Paper, 49, 1127-1141.
  20. [20]  Ricketts, K.D., Gomez, M.I., Atallah, S.S., Fuchs, M.F., Martinson, T.E., Battany, M.C., Bettiga, L.J., Cooper, M.L., Verdegaal, P.S., and Smith, R.J. (2015), Reducing the economic impact of grapevine leafroll disease in California: Identifying optimal disease management strategies, American Journal of Enology and Viticulture, 62(2), 138-147.
  21. [21]  Howitt, R.E. (1982), Multiperiod Optimization: Dynamic Programming vs. Optimal Control: Discussion, Western Agricultural Economics Association, 7(2), 413-417.
  22. [22]  Anita, S., Arnautu, V., and Capasso, V. (2010), An Introduction to Optimal Control. Problems in Life Sciences and Economics. From Mathematical Models to Numerical Simulation with MATLAB, Birkhäuser, New York.
  23. [23]  Galindro, A. and Torres, D.F.M. (2018), A simple mathematical model for unemployment: a case study in Portugal with optimal control, Stat. Optim. Inf. Comput., 6(1), 116-129.
  24. [24]  Denysiuk, R., Silva, C.J., and Torres, D.F.M. (2018), Multiobjective optimization to a TB-HIV/AIDS coinfection optimal control problem, Comput. Appl. Math., 37(2), 2112-2128.
  25. [25]  Rosa, S. and Torres, D.F.M. (2018), Parameter estimation, sensitivity analysis and optimal control of a periodic epidemic model with application to HRSV in Florida, Stat. Optim. Inf. Comput., 6(1), 139-149.
  26. [26]  Hajiabadi,M.E. and Mashhadi, H.R. (2013),Modeling of the Maximum Entropy Problem as an Optimal Control Problem and its Application to pdf Estimation of Electricity Price, Iranian Journal of Electrical & Electronic Engineering, 9(3), 150-157.
  27. [27]  Han, J. and Weinan, E. (2016), Deep Learning Approximation for Stochastic Control Problems, Deep Reinforcement Learning Workshop, NIPS 2016, 9 pp.
  28. [28]  Taylor, C.M. and Hastings, A. (2004), Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora, Journal of Applied Ecology, 41, 1049-1057.
  29. [29]  Silva, C.J., Torres, D.F.M., and Venturino, E. (2017), Optimal spraying in biological control of pests, Math. Model. Nat. Phenom., 12(3), 51-64.
  30. [30]  Chalabi, Z.S., Bailey, B.J., and Wilkinson, D.J. (1995), A real-time optimal control algorithm for greenhouse heating, Computers and Electronics in Agriculture, 15, 1-13.
  31. [31]  Schamel, G.H. and Schubert, S.F. (2016), An optimal control model of crop thinning in viticulture, BIO Web of Conferences, 7(03022), 6 pp. https://doi.org/10.1051/bioconf/20160703022.
  32. [32]  Silva, A.F., Marins, F.A.S., and Montevechi, J.A.B. (2013), Application of mixed binary goal programming in an enterprise in the sugar and energy sector, Gestão e Produção, 20(2), 321-336.
  33. [33]  Arredondo-Ramírez, K., Rubio-Castro, E., Nápoles-Rivera, F., Ponce-Ortega, J.M., Serna-González, M., and El-Halwagi, M.M. (2015), Optimal design of agricultural water systems with multiperiod collection, storage, and distribution, Agricultural Water Management, 152, 161-172.
  34. [34]  Xpress-Mosel, https://www.swmath.org/software/4911
  35. [35]  Özmen, A. (2016), Real-world application with our robust tools. In: Robust Optimization of Spline Models and Complex Regulatory Networks. Contributions to Management Science, Springer, Cham.
  36. [36]  Bryson, A.E. and Ho, Y.C. (1975), Applied optimal control, Hemisphere Publishing Corp., Washington, DC.
  37. [37]  Temoçin, B.Z. and Weber, G.W. (2014), Optimal control of stochastic hybrid system with jumps: a numerical approximation, J. Comput. Appl. Math., 259, part B, 443-451.
  38. [38]  Azevedo, N., Pinheiro, D., and Weber, G.W. (2014), Dynamic programming for a Markov-switching jump-diffusion, J. Comput. Appl. Math., 267, 1-19.