Discontinuity, Nonlinearity, and Complexity
Noise-induced Intermittent Oscillation Death in a Synergetic Model
Discontinuity, Nonlinearity, and Complexity 9(1) (2020) 167--172 | DOI:10.5890/DNC.2020.03.012
R. Jaimes-Reátegui$^{1}$,D. A. Magallón-García$^{1}$, A. Gallegos$^{1}$, G. Huerta-Cuellar$^{1}$, J.H.García-López$^{1}$, A. N. Pisarchik$^{2}$
$^{1}$ Centro Universitario de los Lagos, Universidad de Guadalajara, Enrique Díaz, de León 1144, Paseo de la Montaña, Lagos de Moreno,Jalisco, Mexico
$^{2}$ Centre for Biomedical Technology, Technical University of Madrid, Campus de Montegancedo, Pozuelo de Alarc´on, 28223 Madrid, Spain
Download Full Text PDF
Abstract
We study noise-induced intermittency in a synergetic model of two coupled oscillators with asymmetric nonlinear coupling. This model was previously used to simulate visual perception of ambiguous images. We show that additive noise induces preference for one of the coexisting unstable steady states. When the noise intensity exceeds a certain threshold value, the oscillations of one of the coupled subsystems are interrupted during some time intervals, resulting in intermittent oscillation death, while another subsystem exhibits noisy oscillations in the vicinity of an unstable fixed point.
Acknowledgments
J.H.G.L,G.H.C., and R.J.R. acknowledge support from the University of Guadalajara under project R-0138/2016, Agreement RG /019/ 2018 UdeG, Mexico, for research laboratory equipment for CU Lagos academic groups in Optoelectronics. D. A. M.-G. acknowledges support from Consejo Nacional de Ciencia y Tecnologia (CONACYT) (project No. 590537). A. N. P. acknowledges support from the Ministry of Economy and Competitiveness (Spain) (project SAF2016-80240).
References
-
[1]  | Boccaletti, S., Pisarchik, A.N., del Genio, C.I., and Amann, A. (2018), Synchronization: From Coupled Systems to Complex Networks, Cambridge University Press, Cambridge. |
-
[2]  | Pisarchik, A.N. (2003), Oscillation death in coupled nonautonomous systems with parametrical modulation, Phys. Lett. A, 318, 65–70. |
-
[3]  | Koseska, A., Volkov, E., and Kurths, J. (2013), Oscillation quenching mechanisms: Amplitude vs. oscillation death, Phys. Rep., 531, 173–200. |
-
[4]  | Koseska, A., Volkov, E., and Kurths, J. (2013), Transition from amplitude to oscillation death via Turing bifurcation, Phys. Rev. Lett., 111, 1–5. |
-
[5]  | Zou,W., Sebek,M., Kiss, I.Z., and Kurths, J. (2017), Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment, Chaos, 27, 061101. |
-
[6]  | Haken, H. (2004), Synergetic Computers and Cognition: A Top-Down Approach to Neural Nets, Springer-Verlag, Berlin. |
-
[7]  | Zhao, N., Zhongkui, S., and Wei, X. (2018), Amplitude death induced by mixed attractive and repulsive coupling in the relay system, Eur. Phys. J. B, 91, 20. |
-
[8]  | Magallón-García, D.A., Jaimes-Reátegui, R., and Huerta-Cuellar, G. (2017), Study of multistable visual perception by stochastic modulation using a synergetic model, Cybernetics and Physics, 6, 139-144. |