Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Quadratic Operators Defined on a Finite-dimensional Simplex of Idempotent Measures

Discontinuity, Nonlinearity, and Complexity 8(3) (2019) 279--286 | DOI:10.5890/DNC.2019.09.004

I. T. Juraev, M.M. Karimov

Department of Mathematics, Namangan State University, 316, Uychi st. Namangan, Uzbekistan

Download Full Text PDF

 

Abstract

We describe some quadratic operators which map the (n−1) - dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the first class contains all n×n×n - cubic matrices with nonpositive entries which in each n×n dimensional k-th matrix contains exactly one non-zero row and exactly one non-zero column; the second class contains all n×n×n - cubicmatrices with non-positive entries which has at least one quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent measures. For both classes of quadratic maps we find fixed points.

References

  1. [1]  Shiryaev, A.N. (1996), Probability, 2nd Ed. Springer.
  2. [2]  Ganikhodzhayev, R.N., Mukhamedov, F.M., and Rozikov, U.A. (2011), Quadratic stochastic operators and processes: Results and Open Problems, Infin. Dim. Anal., Quantum Probab. Related Topics. 14(2), 279-285.
  3. [3]  Akian,M. (1999), Densities of idempotentmeasures and large deviations, Trans. Amer. Math. Soc., 351(4), 4515-4543.
  4. [4]  Casas, J.M., Ladra, M., and Rozikov, U.A. (2011), A chain of evolution algebras, Linear Algebra. Appl., 435(4), 852-870.
  5. [5]  Del Moral, P. and Doisy, M. (1999),Maslov idempotent probability calculus, II. Theory Probab. Appl., 44, 319-332.
  6. [6]  Litvinov, G.L. and Maslov, V.P. (2003), Idempotent Mathematics and Mathematical Physics, Vienna.
  7. [7]  Litvinov, G.L. (2007),Math. Sciences, 140(3), 426-433.
  8. [8]  Maslov, V.P. and Samborskii, S N. (1992), Stationary Hamilton-Jacobi and Bellman equations (existence and uniqueness of solutions), Idempotent analysis, Adv. Soviet Math., 13, Amer. Math. Soc., Providence, RI.
  9. [9]  Zarichnyi,M.M. (2010), Spaces and maps of idempotent measures, Izvestiya: Mathematics. 74(3), 481-499.
  10. [10]  Rozikov, U.A. and Karimov, M.M. (2013), Dinamics of linear maps of idempotent measures, Lobachevskii Journal of Mathematics, 34(1), 20-28.
  11. [11]  Del Moral, P. and Doisy, M. (2001), On the applications of Maslov optimization theory, Mathematical Notes, 69(2), 232-244.
  12. [12]  Devaney, R.L. (2003), An introduction to chaotic dynamical system, Westview Press.
  13. [13]  Rudin,W. (1959), Pacific J. Math. 9, 195-203.