Discontinuity, Nonlinearity, and Complexity
Regional Observability with Constraints on the State of Semilinear Parabolic Systems
Discontinuity, Nonlinearity, and Complexity 8(2) (2019) 211--223 | DOI:10.5890/DNC.2019.06.008
Hayat Zouiten, Ali Boutoulout, Fatima-Zahrae El Alaoui
TSI Team, MACS Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco
Download Full Text PDF
Abstract
The paper is devoted to the investigation of regional observability with constraints on the state of semilinear parabolic systems. The purpose is to reconstruct the initial state between two prescribed functions only on an internal subregion ω of the system evolution domain Ω. The proofs use two approaches, the subdifferential and HUM approach. Finally, a numerical example is provided to verify the effectiveness of our theory results.
Acknowledgments
This work has been carried out with a grant from Hassan II Academy of Sciences and Technology project 630/2016.
References
-
[1]  | Fabre, C., Puel, P.J., and Zuazua, E. (1995), Approximate controllability of the semilinear heat equation, Proc. Roy Soc. Edinburgh, 125 A, 31-61. |
-
[2]  | Fernàndez- Cara, E. and Zuazua, E. (2000), Null and approximate controllability for weakly blowing up semilinear heat equation, Annales de L‘Institut Henri Poincaré, Non Linear Analysis, 17(5), 583-616. |
-
[3]  | Zhang, X. (2000), Exact controllability of semilinear evolution systems and its application, Journal of Optimization Theory and Applications, 107(2), 415-432. |
-
[4]  | Zuazua, E. (1990), Exact controllability for the semilinear wave equation, J. Math. Pures Appl, 69, 1-31. |
-
[5]  | Zerrik, E., Larhrissi, R., and Bourray, H.(2007),An output controllability problem for semilinear distributed hyperbolic systems, Int. J. Appl. Math. Comput. Sci., 17(4), 437-448. |
-
[6]  | Magnusson, K.G. (1984), Observability of nonlinear systems, IMA J. Math. Control Information, 1, 339-358. |
-
[7]  | Baroun, M. and Jacob B. (2009), Admissibility and observability of observation operators for semilinear problems, Integral Equations Operator Theory, 64, 1-20. |
-
[8]  | Zerrik, E., Bourray, H., and El Jai, A. (2004), Regional observability for semilinear distributed parabolic systems, Journal of Dynamical and Control Systems, 10(3), 413-430. |
-
[9]  | Boutoulout, A., Bourray, H., and El Alaoui, E.Z. (2010), Some extension of the regional observability for distributed semilinear parabolic systems : theory and simulation, Int. Journal of Math. Analysis, 4(24), 1153-1173. |
-
[10]  | Lions, J.L. and Magenes, E. (1968), Problèmes aux limites non homogènes et applications, 1(2), Dunod, Paris. |
-
[11]  | Pazy, A. (1990), Semigroups of linear operators and applications to partial differential equations, New York: Springer. |
-
[12]  | Zeidler, E. (1990), Nonlinear functional analysis and its applications II/A linear applied functional analysis, Berlin: Springer. |
-
[13]  | Aubin, J.P. (1984), L'analyse non linéaire et ses motivations economiques, Dunod. |
-
[14]  | Lions, J.L. (1988), Contrôabilité exacte perturbations et stabilisation des systèmes distribu, Tome 1, Contrôabilité Exacte, Masson, Paris. |
-
[15]  | Lions, J.L. (1989), Sur la Contrôabilité exacte éargie, Progress in Nonlinear Differential Equations and Their Applications, 1, 703-727. |
-
[16]  | EL Jai, A., Simon, M.C., and Zerrik, E. (1993), Regional observability and sensors structures, Sensors and Actuators Journal, 39, 95-102. |
-
[17]  | EL Jai, A. and Pritchard, A.J. (1988), Sencors and actuators in distributed systeme analysis, Ellis Horwood Series in Applied Mathematics, J. Wiley. |
-
[18]  | Zouiten, H., Boutoulout, A. and El Alaoui, F.Z. (2017), On the regional enlarged observability for linear parabolic systems, Journal of Mathematics and System Science, 7, 79-87. |