Discontinuity, Nonlinearity, and Complexity
Approximation of Random Fixed Point Theorems
Discontinuity, Nonlinearity, and Complexity 7(1) (2018) 95--105 | DOI:10.5890/DNC.2018.03.008
Salahuddin
Department of Mathematics, Jazan University, Jazan, Kingdom of Saudi Arabia
Download Full Text PDF
Abstract
The aim of this paper is to establish and discuss the approximation of Caristi’s random fixed point theorems. Our theorem is used to determine a large numbers of nonlinear stochastic problems.
References
-
[1]  | Spacek, A. (1955), Zufallige gleichungen, Czechoslovak Math., 5, 462-466. |
-
[2]  | Hans, O. (1957), Reduzierende zulliallige transformaten, Czechoslovak Math. J., 7, 154-158. |
-
[3]  | Hans, O. (1961), Random operator equations, Proceedings of the fourth Berkeley Symposium on Math., Statistics and Probability II, Part I, 85-202. |
-
[4]  | Tsokos, C.P. (1969), On a stochastic integral equation of the Volterra type, Math. Systems Theory, 3, 222-231. |
-
[5]  | Tsokos, C.P. and Padgett, W.J. (1971), Random Integral Equations with Applications to Stochastic Sytems, Lecture Notes in Mathematics, Springer, Berlin, Germany, 233 . |
-
[6]  | Tsokos, C.P. and Padgett,W.J. (1974), Random Integral Equations with Applications to Life Sciences and Engineering, Academic Press, New York. |
-
[7]  | Cho, Y.J., Khan, M.F., and Salahuddin (2006), Notes on random fixed point theorems, J. Korea Soc. Math. Educ. Ser.B: Pure and Applied Mathematics, 13(3), 227-236. |
-
[8]  | Ahmad, M.K. and Salahuddin (2010), Collectively random fixed point theorems and application, PanAmer Math. J., 20(3), 69-84. |
-
[9]  | Itoh, S. (1979), Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67, 261-273. |
-
[10]  | Bharucha-Reid, A.T. (1972), Random Integral Equations, Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 9. |
-
[11]  | Bharucha-Reid, A.T. (1976), Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82, 64-65. |
-
[12]  | de Blasi, F.S., Myjak, J., Reich, S., and Zaslavski, A.J. (2009), Generic existence and approximation of fixed points for non ensive set valued maps, Set Valued Var. Anal., 17, 97-112. |
-
[13]  | Kirk,W.A. (2001), Contraction mappings and extensions, Handbook of Metric Fixed Point Theory, Dordrecht, 1-34. |
-
[14]  | Lee, B.S., Farajzadeh, A., and Salahuddin (2015), On PPF dependent fixed point theorems and applications, J. Concrete Applicable Math., 13(1-2), 69-75. |
-
[15]  | Mordukhovich, B.S. (2006), Variational Analysis and Generalized Differentiation, 1, Basi Theory, Springer, Berlin. |
-
[16]  | Reich, S. and Zaslavski, A.J. (2014), Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York. |
-
[17]  | Reich, S. and Zaslavski, A.J. (2015), Variants of Caristi's fixed point theorem, PanAmer. Math. J., 25(1), 42-52. |
-
[18]  | Ahmad, M.K. (2008), and Salahuddin, Random variational like inequalities, Adv. Nonlinear Var. Inequal., 11(2), 15-24. |
-
[19]  | Caristi, J. (1976), Fixed point theorems for maps satisfying inwardness conditions, Trans. Amer. Math. Soc., 215, 241-251. |
-
[20]  | Kim, J.K. and Salahuddin (2015), The existence of deterministic random generalized vector equilibrium problems, Nonlinear Funct. Anal. Appl., 20(3), 453-464. |
-
[21]  | Goudarzi, H.R. (2014), Random fixed point theorems in Frechet spaces with their applications, J. Math. Ext., 8(2), 71-81. |
-
[22]  | Himmelberg, C.J. (1975), Measurable relations, Fund. Math., 87, 53-72. |
-
[23]  | Hussain, S., Khan, M.F., and Salahuddin (2004), Strongly nonlinear mixed random variational inequalities, International J. Math. Sci., 3(2), 361-368. |
-
[24]  | Khan, M.F. and Salahuddin (2006), Completely generalized nonlinear random variational inclusions, Southeast Asian Bull. Math., 30(5), 261-276. |
-
[25]  | Papagergiou, N.S. (1986), Random fixed point theorems for measurable multifunction in Banach spaces, Proc. Amer. Math. Soc., 97(1), 507-514. |
-
[26]  | Salahuddin (2016), General random variational inequalities and applications, Transact. Math. Prog. Appl., 4(1), 25-33. |
-
[27]  | Siddiqi, A.H., Ahmad, M.K., and Salahuddin (2008), Applications of randomly pseudomonotone operators with randomly upper semicontinuity in generalized random quasi-variational inequalities, J. Appl. Funct. Anal., 3(1), 33-50. |
-
[28]  | Tan, K.K. and Yuan, X.Z. (1994), Random fixed point theorems and approximation in cones, J. Math. Anal Appl., 185, 378-390. |
-
[29]  | Verma, R.U., Khan, M.F., and Salahuddin, (2006), Generalized random variational like inequalities with randomly pseudomonotone multivalued mappings, PanAmer. Math. J., 16(3), 33-46. |
-
[30]  | Verma, R.U. and Salahuddin, (2013), A common fixed point theorem for fuzzy mappings, Transact. Math. Prog. Appl., 1(1), 59-68. |
-
[31]  | Verma, R.U. and Salahuddin (2016), Existence of random variational inequalities, PanAmer. Math. J., 26(2), 95-103. |