Discontinuity, Nonlinearity, and Complexity
On the Existence of Stationary Solutions for Some Systems of Non-Fredholm Integro-Differential Equations with Superdiffusion
Discontinuity, Nonlinearity, and Complexity 6(1) (2017) 75--86 | DOI:10.5890/DNC.2017.03.007
Vitali Vougalter$^{1}$, Vitaly Volpert$^{2}$
$^{1}$ Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 2E4, Canada
$^{2}$ Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France
Download Full Text PDF
Abstract
We establish the existence of stationary solutions for certain systems of reaction-diffusion equations with superdiffusion. The corresponding elliptic problem involves the operators with or without Fredholm property. The fixed point technique in appropriate H2 spaces of vector functions is employed.
References
-
[1]  | Agranovich, M.S. (1997), Elliptic boundary problems, Encyclopaedia Math. Sci., Partial Differential Equations, IX, Springer, Berlin, 79, 1-144. |
-
[2]  | Lions, J.L. and Magenes, E. (1968), Problemes aux limites non homogenes et applications. Dunod, Paris, (1), 372. |
-
[3]  | Volevich, L.R. (1965), Solubility of boundary value problems for general elliptic systems, Mat. Sb., 68(110), 373-416; (1968), English translation: Amer. Math. Soc. Transl., 67(2), 182-225. |
-
[4]  | Volpert, V. (2011), Elliptic partial differential equations. Volume I. Fredholm theory of elliptic problems in unbounded domains. Birkh¨auser, 639. |
-
[5]  | Vougalter, V. and Volpert, V. (2012), Solvability conditions for some linear and nonlinear non-Fredholm elliptic problems, Anal. Math. Phys., 2(4), 473-496. |
-
[6]  | Vougalter, V. and Volpert, V. (2011), Solvability conditions for some non Fredholm operators, Proc. Edinb.Math. Soc., (2), 54(1), 249-271. |
-
[7]  | Volpert, V., Kazmierczak, B., Massot, M., and Peradzynski, Z. (2002), Solvability conditions for elliptic problems with non-Fredholm operators, Appl. Math., 29(2), 219-238. |
-
[8]  | Vougalter, V. and Volpert, V. (2010), On the solvability conditions for some non Fredholm operators, Int. J. Pure Appl. Math., 60(2), 169-191. |
-
[9]  | Vougalter, V. and Volpert, V. (2012), On the solvability conditions for the diffusion equation with convection terms, Commun. Pure Appl. Anal., 11(1), 365-373. |
-
[10]  | Vougalter, V. and Volpert, V. (2010), Solvability relations for some non Fredholm operators, Int. Electron. J. Pure Appl.Math., 2(1), 75-83. |
-
[11]  | Volpert, V. and Vougalter, V. (2011), On the solvability conditions for a linearized Cahn-Hilliard equation, Rend. Istit. Mat. Univ. Trieste, 43, 1-9. |
-
[12]  | Vougalter, V. and Volpert, V. (2010), Solvability conditions for some systems with non Fredholm operators, Int. Electron. J. Pure Appl. Math., 2(3), 183-187. |
-
[13]  | Vougalter, V. and Volpert V. (2012), Solvability conditions for a linearized Cahn-Hilliard equation of sixth order, Math. Model. Nat. Phenom., 7(2), 146-154. |
-
[14]  | Ducrot, A., Marion M., and Volpert, V. (2005), Systemes de réaction-diffusion sans propriété de Fredholm, CRAS, 340(9), 659-664. |
-
[15]  | Ducrot, A., Marion M., and Volpert V. (2008), Reaction-diffusion problems with non Fredholm operators, Advances Diff. Equations , 13(11-12), 1151-1192. |
-
[16]  | Ducrot, A., Marion, M., and Volpert, V. (2009), Reaction-diffusion waves (with the Lewis number different from 1). Publibook, Paris, 113. |
-
[17]  | Vougalter, V. and Volpert, V. (2011), On the existence of stationary solutions for some non-Fredholm integrodifferential equations, Doc. Math., 16, 561-580. |
-
[18]  | Carreras, B., Lynch, V., and Zaslavsky, G. (2001), Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys. Plasmas, 8, 5096-5103. |
-
[19]  | Solomon, T., Weeks, E. and Swinney, H. (1993), Observation of anomalous diffusion and Levy flights in a twodimensional rotating flow, Phys. Rev. Lett., 71, 3975-3978. |
-
[20]  | Manandhar, P., Jang, J., Schatz, G.C., Ratner, M.A., and Hong, S. (2003), Anomalous surface diffusion in nanoscale direct deposition processes, Phys. Rev. Lett., 90, 4043-4052. |
-
[21]  | Sancho, J., Lacasta, A., Lindenberg, K., Sokolov, I., and Romero, A. (2004), Diffusion on a solid surface: Anomalous is normal, Phys. Rev. Lett., 92, 250601. |
-
[22]  | Scher, H. and Montroll, E. (1975), Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B, 12, 2455- 2477. |
-
[23]  | Metzler, R. and Klafter, J. (2000), The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77. |
-
[24]  | Apreutesei, N., Bessonov, N., Volpert, V., and Vougalter. V. (2010), Spatial Structures and Generalized Travelling Waves for an Integro-Differential Equation, Discrete Contin. Dyn. Syst. Ser. B, 13(3), 537-557. |
-
[25]  | Berestycki, H., Nadin, G., Perthame, B., and Ryzhik L. (2009), The non-local Fisher-KPP equation: travelling waves and steady states, Nonlinearity, 22(12), 2813-2844. |
-
[26]  | Genieys, S., Volpert, V., and Auger, P. (2006), Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Model. Nat. Phenom., 1(1), 63-80. |
-
[27]  | Beck, M., Ghazaryan, A., and Sandstede, B. (2009), Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities, J. Differential Equations, 246, 4371-4390. |
-
[28]  | Ghazaryan, A. and Sandstede, B. (2007), Nonlinear convective instability of Turing-unstable fronts near onset: a case study, SIAM J. Appl. Dyn. Syst. 6(2), 319-347. |
-
[29]  | Vougalter, V. and Volpert, V. (2016), Existence of stationary solutions for some non-Fredholm integro-differential equations with superdiffusion, Preprint. |
-
[30]  | Shen, W. and Zhang, A. (2010), Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats, J. Differential Equations, 249(4), 747-795. |
-
[31]  | Hislop, P.D. and Sigal, I.M. (1996), Introduction to spectral theory. With applications to Schr¨odinger operators. Springer, 337. |
-
[32]  | Bessonov, N., Reinberg, N., and Volpert, V. (2014), Mathematics of Darwins Diagram, Math. Model. Nat. Phenom., 9(3), 5-25. |