Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Review on Finite Difference Method for Reaction-Diffusion Equation Defined on a Circular Domain

Discontinuity, Nonlinearity, and Complexity 5(2) (2016) 133--144 | DOI:10.5890/DNC.2016.06.003

Walid Abid$^{1}$, R. Yafia$^{2}$, M.A. Aziz-Alaoui$^{3}$, H. Bouhafa$^{1}$, A. Abichou$^{1}$

$^{1}$ Université de Carthage, Laboratoire d’ingenierie Mathématique EPT, Tunisia.

$^{2}$ Ibnou Zohr University, Polydisciplinary Faculty of Ouarzazate, B.P: 638, Ouarzazate, Morocco.

$^{3}$ Laboratoire de Mathématiques Appliqu´ees, 25 Rue Ph. Lebon, BP 540, 76058 Le Havre Cedex, France.

Download Full Text PDF

 

Abstract

In this paper, a finite difference method for a non-linear reaction diffusion equation defined on a circular domain is presented. A simple second-order finite difference treatment of polar coordinate singularity for Laplacian operator, the centered difference approximations, the treatments for Neumann boundary problems are used to discretize this equation. By using this method, numerical solutions can be computed. In the end, we give two applications of reaction diffusion predator-prey models with modified Leslie-Gower and Holling type II functional responses.

References

  1. [1]  Murray, J.D. (1993), Mathematical Biology, Springer-Verlag, Berlin.
  2. [2]  Fisher, R.A. (1937), The advance of advantageous genes, Ann. Eugenics, 7, 335-369.
  3. [3]  Kolmogorov, A.N., Petrovsky, I.G. and Piskunov, N.S. (1937), Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bulletin Université d'É tat à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale A, 1, 1-26.
  4. [4]  Randall, J.L. (2005), Finite Difference Methods for Differential Equations, University of Washington.
  5. [5]  Garvie, M.R. (2007), Finite-Difference Schemes for Reaction Diffusion Equations Modeling Predator Prey Interactions in MATLABMathematical Biology, School of Computational Science, Florida State University, Tallahassee, FL 32306- 4120, USA.
  6. [6]  Richtmyer, R. and Morton K.W. (1967), Difference methods for initial-value problems, Wiley, reprinted by Krieger Publ. Co., Florida, 1994.
  7. [7]  Hildebrand, F.B (1968), Finite-difference equations and simulations, Prentice-Hall.
  8. [8]  Ascher, U.M., Ruuth, S.J., and Wetton, B.T.R. (1995), Implicit-explicit methods for time-dependent PDE's, SIAM J. Numer. Anal., 32, 797-823.
  9. [9]  Pao, C.V. (1998), Asymptotic behavior of solutions of solutions of reaction-diffusion equations with nonlocal boundary conditions, J. Comput. Appl. Math., 88 225-238.
  10. [10]  Camara, B.I. (2009), Complexité de dynamiques de modèles proie-prédateur avec diffusion et applications, Ph.D. thesis, Université duHavre.
  11. [11]  Swarztrauber, P.N. and Sweet, R.A. (1973), The direct solution of the discrete Poisson equation on a disk, SIAM J. Numer. Anal., 10, 900-907.
  12. [12]  Schumann, U. and Sweet, R.A. (1976), A direct method for the solution of Poisson's equation with Neumann boundary conditions on a staggered grid of arbitary size, J. Comput. Phys., 2, 171-182.
  13. [13]  Camara, B.I. and Aziz-Alaoui, M.A. (2008), Dynamics of predator-prey model with diffusion, Dynamics of Continuous, Discrete and Impulsive System, series A, 15, 897-906.
  14. [14]  Li, N., Steiner, J. and Tang, S.M., (1994), Convergence and stability analysis of an explicit finite difference method for 2-dimensional reaction-diffusion equations, J. Aust. Math. Soc. Ser. B, 36, 234-241.
  15. [15]  Thomée, V. (1991), Finite differences for linear parabolic equations. Handbook of Numerical Analysis, I. North- Holland, Amsterdam.
  16. [16]  Jerome, J., (1984), Fully discrete stability and invariant rectangular regions for reaction-diffusion systems, SIAM J. Numer. Anal., 21(6), 1054-1065.
  17. [17]  Leslie, P.H. (1948), Some further notes on the use of matrices in population mathematics, Biometrica, 35, 213-245.