Discontinuity, Nonlinearity, and Complexity
Existence of Stationary Solutions for some Systems of Integro-Differential Equations
Discontinuity, Nonlinearity, and Complexity 5(1) (2016) 75--84 | DOI:10.5890/DNC.2016.03.008
Vitali Vougalter$^{1}$, Vitaly Volpert$^{2}$
$^{1}$ Department of Mathematics, University of Toronto, Toronto, Ontario, M5S 2E4, Canada
$^{2}$ Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, 69622, France
Download Full Text PDF
Abstract
The article deals with the existence of solutions of a system of nonlocal reaction-diffusion equations which appears in population dynamics. The proof relies on a fixed point technique. Solvability conditions for elliptic operators in unbounded domains which fail to satisfy the Fredholm property are being used.
References
-
[1]  | Alfimov, G.L., Medvedeva, E.V., and Pelinovsky, D.E. (2014),Wave Systems with an Infinite Number of Localized TravelingWaves, Phys. Rev. Lett., 112, 054103, 5pp. |
-
[2]  | Amrouche, C., Girault, V., and Giroire, J. (1997), Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math, Pures Appl., 76, 55-81. |
-
[3]  | Amrouche, C. and Bonzom, F. (2008),Mixed exterior Laplace's problem, J. Math. Anal. Appl., 338, 124-140. |
-
[4]  | Benkirane, N. (1988), Propriété d'indice en th∩eorie Holderienne pour des opérateurs elliptiques dans Rn, CRAS, 307, Série I, 577-580. |
-
[5]  | Bessonov, N., Reinberg, N., and Volpert, V. (2014), Mathematics of Darwins Diagram, Math. Model. Nat. Phenom., 9(3), 5-25. |
-
[6]  | Bolley, P. and Pham, T.L. (1993), Propriété d'indice en théorie Holderienne pour des opérateurs différentiels elliptiques dans Rn, J. Math. Pures Appl., 72, 105-119. |
-
[7]  | Bolley, P. and Pham, T.L. (2001), Propriété d'indice en théorie Hölderienne pour le problème extérieur de Dirichlet, Comm. Partial Differential Equations, 26(1-2), 315-334. |
-
[8]  | Cuccagna, S., Pelinovsky, D., and Vougalter, V. (2005),Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl. Math., 58(1), 1-29. |
-
[9]  | Ducrot, A., Marion, M., and Volpert, V. (2005), Systemes de réaction-diffusion sans propriété de Fredholm, CRAS, 340, 659-664. |
-
[10]  | Ducrot, A., Marion, M., and Volpert, V.(2008), Reaction-diffusion problems with non Fredholm operators, Advances Diff. Equations, 13(11-12), 1151-1192. |
-
[11]  | Lieb, E and Loss, M.(1997), Analysis. Graduate Studies in Mathematics, 14, American Mathematical Society, Providence. |
-
[12]  | Volpert, V. (2011), Elliptic partial differential equations. Volume 1. Fredholm theory of elliptic problems in unbounded domains, Birkhauser. |
-
[13]  | Vougalter, V.(2010), On threshold eigenvalues and resonances for the linearized NLS equation, Math. Model. Nat. Phenom., 5(4), 448-469. |
-
[14]  | Volpert, V., Kazmierczak, B., Massot, M., and Peradzynski, Z. (2002), Solvability conditions for elliptic problems with non-Fredholm operators, Appl. Math., 29(2), 219-238. |
-
[15]  | Vougalter, V. and Volpert,V. (2011), Solvability conditions for some non-Fredholm operators, Proc. Edinb. Math. Soc. (2), 54 (1), 249-271. |
-
[16]  | Vougalter, V. and Volpert, V. (2010), On the solvability conditions for some non Fredholm operators, Int. J. Pure Appl. Math., 60(2), 169-191. |
-
[17]  | Vougalter, V. and Volpert, V. (2012), On the solvability conditions for the diffusion equation with convection terms, Commun. Pure Appl. Anal., 11(1), 365-373. |
-
[18]  | Vougalter, V. and Volpert,V. (2010), Solvability relations for some non Fredholm operators,Int. Electron. J. Pure Appl. Math. , 2(1), 75-83. |
-
[19]  | Volpert, V. and Vougalter, V. (2011), On the solvability conditions for a linearized Cahn-Hilliard equation, Rend. Istit. Mat. Univ. Trieste, 43, 1-9. |
-
[20]  | Vougalter, V. and Volpert, V. (2011), On the existence of stationary solutions for some non-Fredholm integrodifferential equations, Doc. Math., 16, 561-580. |
-
[21]  | Vougalter, V. and Volpert,V. (2012), Solvability conditions for a linearized Cahn-Hilliard equation of sixth order, Math. Model. Nat. Phenom., 7(2), 146-154. |
-
[22]  | Vougalter, V. and Volpert,V. (2012), Solvability conditions for some linear and nonlinear non-Fredholm elliptic problems, Anal. Math. Phys., 2(4), 473-496. |
-
[23]  | Vougalter, V. and Volpert,V. (2015), Existence of stationary solutions for some nonlocal reaction-diffusion equations, Dyn. Partial Differ. Equ., 12(1), 43-51. |
-
[24]  | Vougalter, V. and Volpert,V. (2015), Existence of stationary solutions for some integro-differential equations with superdiffusion. Preprint. |