Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Poincaré Recurrences in the Circle Map: Fibonacci Stairs

Discontinuity, Nonlinearity, and Complexity 4(2) (2015) 111--119 | DOI:10.5890/DNC.2015.06.001

V.S. Anishchenko; N.I. Semenova; T.E. Vadivasova

Saratov State University - 83 Astrakhanskaya str., Saratov, Russia, 410012

Download Full Text PDF

 

Abstract

We show that the dependence of the mimimal Poincaré return time on the vicinity size is universal for the golden and silver ratios in the circle map and can be referred to as the “Fibonacci stairs”. The rigorous result for the Afraimovich-Pesin dimension equality αc = 1 is confirmed for irrational rotation numbers with the measure of irrationality μ = 2. It is shown that some transcendental number are Diophantine and have the measure μ = 2. It is also confirmed that the gauge function 1/t cannot be applied for Liouvillian numbers. All the obtained features hold for both the linear and the nonlinear circle map.

Acknowledgments

The reported study was partially supported by RFBR, research project No. 15-02-02288. N.I. Semenova gratefully acknowledges the Dynasty Foundation.

References

  1. [1]  Nemytskii, V.V. and Stepanov, V.V. (1989), Qualitative Theory of Differential Equations, Dover Publications, New York.
  2. [2]  Afraimovich, V. (1997), Pesin's dimension for Poincaré recurrences, Chaos, 7, 12-20.
  3. [3]  Afraimovich, V.V. and Zaslavsky, G. (1997), Fractal and multifractal properties of exit times and Poincaré recurrences, Physical Review E, 55, 5418-5426.
  4. [4]  Afraimovich, V., Ugalde, E., and Urias, J. (2006), Fractal Dimension for Poincaré Recurrences, Elsevier.
  5. [5]  Kac, M. (1947), On the notion of recurrence in discrete stochastic processes, Bulletin of the American Mathematical Society, 53, 1002-1010.
  6. [6]  Hirata, M., Saussol, B., and Vaienti, S. (1999), Statistics of Return Times: A General Framework and New Applications, Communications in Mathematical Physics, 206, 33-55.
  7. [7]  Penné, V., Saussol, B., and Vaienti, S. (1997), Fractal and statistical characteristics of recurrence times, Talk at the Conference isorder and Chaos, Rome, September 1997, preprint CPT.
  8. [8]  Anishchenko, V.S., Astakhov, S.V., Boev, Ya.I., Biryukova, N.I., and Strelkova, G.I. (2013), Statistics of Poincaré recurrences in local and global approaches, Communications in Nonlinear Science and Numerical Simulation, 18, 3423-3435.
  9. [9]  Anishchenko, V.S. and Astakhov, S.V. (2013), Poincaré recurrence theory and its applications to nonlinear physics, Physics - Uspekhi, 56(10), 955-972.
  10. [10]  Afraimovich, V., Lin, W.W., and Rulkov, N.F. (2000), Fractal dimension for Poincaré recurrences as an indicator of synchronized chaotic regimes, International Journal of Bifurcation and Chaos, 10, 2323-2337.
  11. [11]  Anishchenko, V., Khairulin, M., Strelkova, G., and Kurths, J. (2011), Statistical characteristics of the Poincare return times for a one-dimensional nonhyperbolic map, The European Physical Journal B, 82, 219-225.
  12. [12]  Pikovsky, A., Rosenblum, M., and Kurths, J. (2002), Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press.
  13. [13]  Slater, N.B. (1967), Gaps and steps for the sequence n mod 1, Proceedings of Cambridge Philosophical Society, 4, 1115-1123.
  14. [14]  Buric, N., Rampioni, A., and Turchetti, G. (2005), Statistics of Poincaré recurrences for a class of smooth circle maps, Chaos, Solitons and Fractals, 23, 1829-1840.
  15. [15]  Bicknell, M. (1975), A primer on the Pell sequence and related sequences, Fibonacci Quarterly, 13, 345-349.
  16. [16]  Roth, K. (1955), Rational Approximations to Algebraic Numbers, Mathematika, 2, 1-20.
  17. [17]  Denjoy, A. (1932), Sur les courbes définies par les équations différentielles à la surface du tore, Journal de Mathématiques Pures et Appliquées, 11, 333-375.