Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Fractional Fourier Detection of Lévy Flights Application to Hamiltonian Chaotic Trajectories

Discontinuity, Nonlinearity, and Complexity 2(2) (2013) 103--114 | DOI:10.5890/DNC.2013.04.001

Françoise Briolle$^{1}$,$^{2}$; Xavier Leoncini$^{2}$; Benjamin Ricaud$^{3}$

$^{1}$ CReA, BA 701 Salon de Provence 13300, France

$^{2}$ Centre de Physique Théorique, CNRS-Aix-Marseille Université, Campus de Luminy, Case 907, F-13288 Marseille cedex 9, France

$^{3}$ Institute of Electrical Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Download Full Text PDF

 

Abstract

A signal processing method designed for the detection of linear (coherent) behaviors among random fluctuations is presented. It is dedicated to the study of data recorded from nonlinear physical systems. More precisely the method is suited for signals having chaotic variations and sporadically regular linear patterns, possibly impaired by noise. We use time-frequency techniques and the Fractional Fourier transform in order to make it robust and easily implementable. The method is illustrated with an example of application: the analysis of chaotic trajectories of advected passive particles. The signal has a chaotic behavior and encounters Lévy flights (straight lines). The method allows to detect and quantify these ballistic transport regions, even in noisy situations.

References

  1. [1]  Flandrin, P. (1993), Temps-Fréquence, Hermès, Paris.
  2. [2]  Almeida, L.B. (1994), The Fractional Fourier transform and time-frequency representations, IEEE Transactions on Signal Processing , 42 (11), 3084-3091.
  3. [3]  Clairet, F., Ricaud, B., Briolle, F., Heuraux, S., and Bottereau, C. (2011), New signal processing technique for density profile reconstruction using reflectometry, Review of Scientific Instruments, 82, 8.
  4. [4]  Mallat, S., Zhang, Z. (1993), Matching pursuits with time-frequency dictionnaries, IEEE Transactions on Signal Processing, 41(12), 3397-415.
  5. [5]  Ozaktas, H.M., Zalevsky, Z., and Alper Kutay, M. (2001), The Fractional Fourier Transform with Applications in Optics and Singal Processing, John Wiley and Sons Ltd.
  6. [6]  Ozaktas, H.M., Alper Kutay, andM., Bozdagi, G. (1996), Digital computation of the Fractional Fourier transform, IEEE Transactions on Signal Processing, 44, 9.
  7. [7]  Ricaud, B., Briolle, F., and Leoncini, X. (2012), A signal processing method: detection of Lévy flights in chaotic trajectories, IEEE 4th International Conference on Nonlinear Science and Complexity.
  8. [8]  Man'ko, M.A., Man'ko, V.I., and Vilela Mendes, R. (2001), Tomograms and other transforms: A unified view, Journal of Physics A: Mathematical and Theoretical, 34, 8321-8332.
  9. [9]  Briolle, F., Man'ko, V.I., Ricaud, B., and Vilela Mendes, R. (2012), Noncommutative tomography: A tool for data analysis and signal processing, Journal of Russian Laser Research, 33 (2), 103-121.
  10. [10]  Baraniuk, R.G. and Jones, D.L. (1993), Shear madness: new orthonormal bases and frames using chirp functions, IEEE Transactions on Signal Processing, 41 (12), 3543-3549.
  11. [11]  Brown, M. and Smith, K. (1991), Ocean stirring and chaotic low-order dynamics, Physics of Fluids, 3, 1186.
  12. [12]  Behringer, R.P., Meyers, S., and Swinney, H.L. (1991), Chaos and mixing in geostrophic flow, Physics of Fluids A, 3, 1243.
  13. [13]  Chernikov, A.A., Petrovichev, B.A., Rogal'sky, A.V., Sagdeev R.Z., and Zaslavsky, G.M. (1990), Anomalous transport of streamlines due to their chaos and their spatial topology, Physics Letters A, 144, 127.
  14. [14]  Dupont, F., McLachlan, R.I., and Zeitlin, V. (1998), On possible mechanism of anomalous diffusion by Rossby waves, Physics of Fluids, 10, 3185.
  15. [15]  Crisanti, A., Falcioni, M., Provenzale, A., Tanga, P., and Vulpiani, A. (1992), Dynamics of passively advected impurities in simple two-dimensional flow models, Physics of Fluids A, 4, 1805.
  16. [16]  Carreras, B.A., Lynch, V.E., Garcia, L., Edelman, M., Zaslavsky, G.M. (2003), Topological instability along filamented invariant surfaces, Chaos, 13, 1175.
  17. [17]  Annibaldi, S.V., Manfredi, G., Dendy, R.O., Drury, L.O. (2000), Evidence for strange kinetics in Hasegawa-Mima turbulent transport, Plasma Physics and Controlled Fusion 42, L13.
  18. [18]  del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E. (2004), Fractional diffusion in plasma turbulence, Physics of Plasmas, 11, 3854.
  19. [19]  Leoncini, X, Agullo, O, Benkadda S., and Zaslavsky, G.M. (2005), Anomalous transport in Charney-Hasegawa- Mima flows, Physical Review E 72, 026218.
  20. [20]  Briolle, F., Lima, R., Man'ko, V.I., Vilela Mendes, R. (2009), A tomographic analysis of reflectometry data I: Component factorization, Measurement Science and Technology , 20, 10.
  21. [21]  Aref, H. (1984), Stirring by chaotic advection, Journal of Fluid Mechanics 143, 1.
  22. [22]  Aref, H. (1990), Chaotic advection of fluid particles, Philosophical Transactions of the Royal Society A, 333, 273.
  23. [23]  Ottino, J.M. (1990),Mixing, Chaotic advection and turbulence, Annual Review of Fluid Mechanics , 22, 207.
  24. [24]  Ottino, J.M. (1989), The Kinematics of Mmixing: Streching, Chaos, and Transport, Cambridge University Press, Cambridge.
  25. [25]  Zaslavsky, G.M., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A. (1991), Weak Chaos and Quasiregular Patterns, Cambridge University Press, Cambridge.
  26. [26]  Crisanti, A., Falcioni, M., Paladin, G., Vulpiani, A (1991), Lagrangian chaos: transport, mixing and diffusion in fluids, Rivista Del Nuovo Cimento 14, 1.
  27. [27]  Marchioro, C., Pulvirenti, M. (1994), Mathematical theory of uncompressible nonviscous fluids, Applied Mathematical Science, 96, Springer-Verlag, New York.
  28. [28]  Novikov, E.A. and Sedov, Y.B. (1978), Stochastic properties of a four-vortex system, Soviet Physics JETP 48, 440.
  29. [29]  Aref, H. and Pomphrey, N. (1980), Integrable and chaotic motion of four vortices, Physics Letters A, 78, 297.
  30. [30]  Kuznetsov, L. and Zaslavsky, G.M. (1998), Regular and Chaotic advection in the flow field of a three-vortex system, Physical Review E, 58, 7330.
  31. [31]  Kuznetsov, L. and Zaslavsky, G.M. (2000), Passive particle transport in three-vortex flow, Physical Review E, 61, 3777.
  32. [32]  Leoncini, X., Kuznetsov, L., and Zaslavsky, G.M., (2001), Chaotic advection near a 3-vortex Collapse, Physical Review E, 63, 036224.