Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Fractional Electromagnetic Wave

Discontinuity, Nonlinearity, and Complexity 1(4) (2012) 325--335 | DOI:10.5890/DNC.2012.09.004

J.J. Rosales$^{1}$; M. Guía$^{1}$; J.F. Gómez$^{2}$; V.I. Tkach$^{3}$

$^{1}$ Departamento de Ingeniería Eléctrica. División de Ingenierías Campus Irapuato-Salamanca. Universidad de Guanajuato. Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km. Comunidad de Palo Blanco, Salamanca Guanajuato, México

$^{2}$ Departamento de Física. División de Ciencias e Ingenierías Campus León. Universidad de Guanajuato Lomas del Bosque s/n, Lomas del Campestre, León Guanajuato, México

$^{3}$ Department of Physics and Astronomy. Northwestern University, Evanston, IL 60208-3112, USA

Download Full Text PDF

 

Abstract

In this article we propose an alternative procedure for constructing fractional differential equations. The order of the derivative being considered is 0 < γ ≤ 1. In particular, we will consider the propagation of electromagnetic waves in an infinitely extended homogeneous media at rest, characterized by the permittivity ε and permeability μ. Two types of the fractional differential equations will be examined separately; with fractional time derivative and the spatial fractional derivative. The parameters σt and σx are introduced which characterize the existence of the fractional time and space components, respectively. It is shown that in the first case there is a relation between σt and the period T0 of the wave given by the order γ of the fractional differential equation, and in the second case the relation is between σx and the wavelength λ . Due to these relations the solutions of the corresponding fractional differential equations are given in terms of the Mittag-Leffler function depending only on the parameter γ.

Acknowledgments

We would like to thank Juan Martínez, Edgar Alvarado, Carlos R. Montoro and Irina Lyanzuridi for interesting discussions. This work is partly supported by PROMEP: Fortalecimiento de CAs, UGTO-CA-27, with fruitful funds.

References

  1. [1]  Oldham, K.B. and Spanier, J. (1974), The fractional Calculus, Academic Press, San Diego.
  2. [2]  Miller, K.S. and Ross, B. (1993), An introduction to the fractional calculus and fractional differential equations, Wiley, New York.
  3. [3]  Samko, S.G., Kilbas, A.A., and Maritchev, O.I. (1993), Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach Science Publishers, Langhorne, PA.
  4. [4]  Podlubny, I. (1999), Fractional Differential Equations, Academic Press, San Diego.
  5. [5]  Wyss, W. (1986), The fractional diffusion equation, J. Math. Phys., 27, 2782-2785.
  6. [6]  Hilfer, R. (2000), Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem., B,104, 3914-3917.
  7. [7]  Metzler,R. and Klafter, J. (2000), The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77.
  8. [8]  Agrawal, O.P., Tenreiro-Machado, J.A., Sabatier, I. (2004), Fractional Derivatives and Their Applications, Eds., Nonlinear Dynamics, 38, Springer-Verlag, Berlin.
  9. [9]  Hilfer, R. (2000), Applications of Fractional Calculus in Physics, Ed., World Scientific, Singapore.
  10. [10]  West, B.J., Bologna, M. and Grigolini, P. (2003), Physics of Fractional Operators, Springer-Verlag, Berlin.
  11. [11]  Magin, R. L. (2006), Fractional calculus in Bioengineering, Begell House Publisher, Rodding.
  12. [12]  Caputo, M. and Mainardi, F. (1971), A new dissipation model based on memory mechanism, Pure and Applied Geophysics, 91, 134-147.
  13. [13]  Westerlund, S. (1994), Causality, report no. 940426, University of Kalmar.
  14. [14]  Veliev, E.I. and Engheta, N. (2004), Fractional curl operator in reflection problems, 10th Int. Conf. on Mathematical Methods in Electromagnetic Theory, Ukraine, Sept. 14-17.
  15. [15]  Baleanu, D., Günvenc, Z.B., and Tenreiro Machado, J.A. (2010), New Trends in Nanotechnology and Fractional Calculus Applications, (Eds), Springer.
  16. [16]  Mandelbrot, B. (1982), The Fractal Geometry of Nature, Freeman, San Francisco.
  17. [17]  Engheta, N. (1996), On fractional calculus and fractional multipoles in electromagnetism, IEEE Trans. Antennas Propagat., 44, 554-566.
  18. [18]  Naqvi, Q.A., and Abbas, M. (2004), Complex and higher order fractional curl operator in electromagnetics, Optics Communications, 241, 349-355.
  19. [19]  Hussain, A., Ishfaq, S., and Naqvi. Q.A. (2006), Progress in Electromagnetic Research, PIER, 63, 319-355.
  20. [20]  Hussain, A., Naqvi, Q.A., and Abbas, M. (2007), Progress in Electromagnetic Research, PIER, 71, 85-94.
  21. [21]  Hussain, A., Faryad,M. and Naqvi, Q.A. (2007), Fractional curl operator and fractional Chiro-waveguide, Journal of Electromagnetic Waves and Applications, 21(8), 1119-1129.
  22. [22]  Hussain, A. and Naqvi, Q.A. (2007), Progress in Electromagnetic Research, PIER, 73, 61-69.
  23. [23]  Faryad, M. and Naqvi, Q. A. (2007), Progress in Electromagnetic Research, PIER, 75, 383-396.
  24. [24]  Tarasov, V.E. (2008), Fractional equations of Curie-von Schweidler and Gauss laws, J. Phys. Condens. Matter, 20, 145-212.
  25. [25]  Tarasov., V.E. (2008), Universal electromagnetic waves in dielectric, J. Phys. Condens. Matter, 20, 175-223.
  26. [26]  Zubair, M., Mughal, M.J., Naqvi, Q.A., and Rizvi. A.A., (2011), Progress in Electromagnetics Research, PIER, 114, 255-269.
  27. [27]  Gómez-Aguilar, J.F., Rosales-García, J.J., Bernal-Alvarado, J.J., Córdova-Fraga, T., Guzmán-Cabrera, R. (2012), Fractional mechanical oscillators, Rev. Mex. Fís. 58, 348-352.
  28. [28]  Podlubny, I. (2002), Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal, 5(4), 367-386.
  29. [29]  Moshrefi-Torbati, M. and Hammond, J. K. (1998), Physical and geometrical interpretation of fractional operators, J. Franklin Inst., 335 B(6), 1077-1086.