Discontinuity, Nonlinearity, and Complexity
Invariants in 3D for Classical Superintegrable Systems in Complex Phase Space
Discontinuity, Nonlinearity, and Complexity 1(4) (2012) 399--407 | DOI:10.5890/DNC.2012.07.004
Jasvinder Singh Virdi$^{1}$; S.C. Mishra$^{2}$
$^{1}$ Department of Physics, Panjab University, Chandigarh-160014, INDIA
$^{2}$ Department of Physics, Kurukshetra University, Kurukshetra-136119, INDIA
Download Full Text PDF
Abstract
Physical dynamical systems in higher dimensions are always interesting. In this context we present here the possibility of its three-dimensional complex dynamical invariant in extended complex phase space(ECPS). Lie algebraic method is used to study three-dimensional classical superintegrable system on the extended complex phase space. Such complex invariants play an important role in the analysis of complex trajectories, also study of non-hermitian Hamiltonian systems.
References
-
[1]  | Giacomini, H.J., Repetto, C.E. and Zandron, P. (1991), Integrals of motion for three-dimensional non- Hamiltonian dynamical systems, J. Phys. A: Math. Gen., 24, 4567-4574. |
-
[2]  | Hietarinta, J. (1987), Direct methods for the search of the second invariant, Phys. Rep., 147, 87-154. |
-
[3]  | Evans, N.W. (1990), Superintegrability in classical mechanics, Phys. Rev. A., 41, 5666-5676. |
-
[4]  | Kibler, M. and Winternitz, P.(1990), Periodicity and quasiperiodicity for superintegrable Hamiltonian systems, Phys. Lett. A., 147, 338-342. |
-
[5]  | Whiteman, K.J. (1977), Invariants and stability in classical mechanics, Rep. Prog. Phys., 40, 1033-1069. |
-
[6]  | Hollowood, T.J.(1992), Solitons in affine Toda field theories, Nucl. Phys. B., 386, 166. |
-
[7]  | Nelson, D.R. and Snerb, N.M. (1998), Winding numbers, complex currents, and non-Hermitian localization, Phys. Rev. E., 80, 23. |
-
[8]  | Kausal, R.S. (2009), Classical and quantum mechanics of complex hamiltonian systems: An extended complex phase space approach, Pramana J. Phy., 73, 2. |
-
[9]  | Virdi, J.S., Chand, F., Kumar, C.N. and Mishra, S.C. (2012), Complex dynamical invariants for twodimensional nonhermitian Hamiltonian systems, Can. J. Phys., 90, 2, 151-157. |
-
[10]  | Bender C.M. and Boettcher, S. (1998), Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett., 80, 5243-5246. |
-
[11]  | Xavier, Jr.A.L. and de Aguiar, M.A.M. (1996), A new form of path integral for the coherent states representation and its semiclassical limit,Ann. Phys. (N.Y.), 252, 458. |
-
[12]  | Kaushal, R.S. and Mishra, S. C. (1993), Dynamical algebraic approach and invariants for time-dependent Hamiltonian systems in two dimensions, J. Math. Phys., 34, 5843. |
-
[13]  | Virdi, J.S. and Mishra, S. C.(2012), Exact complex integrals in two dimensions for shifted harmonic oscillators, Pramana, J. Phys., 79, 1. |
-
[14]  | Virdi, J.S., Chand, F., Kumar, C. N. and Mishra, S. C. (2012), Complex dynamical inv ariants for tw o-dimensional complex potentials, Pramana, J. Phys., 79, 2. |
-
[15]  | Virdi, J.S. and Mishra, S. C. (2012), Complex invariant in two-dimension for coupled oscillator system, Int. J. Appl. Math. Comp., 4, 1. |
-
[16]  | Strukmeier, J. and Riedel, C. (2000), Exact Invariants for a Class of three-dimensional time-dependent classical Hamiltonians, Phys. Rev. Lett., 85, 3830; Phys. Rev. E., 64, 26503. |
-
[17]  | Kovacic, I. (2010), Invariants and approximate solutions for certain non-linear oscillators by means of the field method, Applied Math. and Comp., 215, 3482-3487. |
-
[18]  | Abdalla, M.S. and Leach, P.G.L. (2011), Lie algebraic approach and quantum treatment of an anisotropic charged particle via the quadratic invariant, J. Math. Phys., 52, 083504. |
-
[19]  | Hietarienta, J. (1983), A search for integrable two-dimensional Hamiltonian systems with polynomial potential, Phy. Letts., 96A, 273-278. |
-
[20]  | Kim, S.P. and Page, D. N.(2001), Classical and quantum action-phase variables for time-dependent oscillators, Phys. Rev. A, 64, 012104. |
-
[21]  | Kusenko, A. and Shrock, R. (1994), General determination of phases in leptonic mass matrices, Phy. Lett. B., 323, 1824; Phys. Rev. D., 50, R30-R33. |
-
[22]  | Gunion, J.F. and Haber, H.E. (2005), Conditions for CP violation in the general two-Higgs-doublet model, Phys. Rev. D., 72, 095002. |