Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Secure Communication Based on Chaotic Cipher and Chaos Synchronization

Discontinuity, Nonlinearity, and Complexity 1(1) (2012) 57--68 | DOI:10.5890/DNC.2012.02.003

Maricela Jiménez-Rodríguez$^{1}$,$^{2}$, Rider Jaimes-Reategui$^{2}$, Alexander N. Pisarchik$^{3}$

$^{1}$ Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad 1115, Lindavista, Ocotlán, Jalisco, Mexico

$^{2}$ Centro Universitario de Los Lagos, Universidad de Guadalajara, Enrique Díaz de León 1144, Paseo de la Motaña, Lagos de Moreno, Jalisco, Mexico

$^{3}$ Centro de Investigaciones en Optica, Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato, 37150, Mexico

Download Full Text PDF

 

Abstract

We proposed a secure communication system, which combines two different techniques of chaotic cryptography: chaotic cipher based on the logistic map for information diffusion, and chaos synchronization of two coupled R¨ossler oscillators for information confusion. The system contains two channels, one for synchronization and another for information transmission. Using the chaotic logistic map, a message is encrypted into one of the variables of the R¨ossler oscillator in the transmitter and sent to the receiver via the communication channel, while the Rössler oscillators are synchronized via the synchronization channel by another variable. Due to excellent confusion and diffusion properties, both exploiting important properties of chaos, the proposed communication system is extremely secure and fast enough to provide communication in real time.

Acknowledgments

The authors acknowledge the support from PROMEP-SEP (PROMEP/103.5/10/5818) and CONACYT (project No. 100429) (Mexico).

References

  1. [1]  Hans, D. and Helmut, K. (2007), Introduction to Cryptography, 2 ed., Springer, New York, 11–53.
  2. [2]  Shanon, C.E. (1949), Communication theory of secrecy systems, Bell. Syst. Tech. J., 28(4), 656–715.
  3. [3]  Rolf, O.(2005),Contemporary Cryptography, Artech House, London, 173–201.
  4. [4]  Robert, C.H. (1999), Chaos and Nonlinear Dynamics, 2 ed., Oxford University Press, Oxford.
  5. [5]  Bose, R. and Pathak, S. (2006), A novel compression and encryption scheme using variable model arithmetic coding and coupled chaotic system, IEEE Trans. Circ. Sys. I, 53(4), 848–857.
  6. [6]  Pareek, N.K., Patidar, V. and Sud, K.K. (2005), Cryptography using multiple one-dimensional chaotic maps, Commun. Nonl. Sci. Num. Simul., 10, 715–723.
  7. [7]  Pisarchik, A.N., Flores-Carmona, N.J. and Carpio-Valadez, M. (2006), Encryption and decryption of images with chaotic map lattices, Chaos, 16(3), 033118–1/6.
  8. [8]  Pisarchik, A.N. and Flores-Carmona, N.J. (2006), Computer algorithms for direct encryption and decryption of digital images for secure communication,WSEAS Transactions on Computers Research, 1(2), 156–161.
  9. [9]  Pisarchik, A.N. and Zanin, M. (2008), Image encryption with chaotically coupled chaotic maps, Physica D, 237, 2638–2648.
  10. [10]  Hiraoka T. and NishioY. (2004), Analysis of a cryptosystem using a chaotic map extended to two dimensions, Proc. RISP Intern. Workshop on Nonlinear Circuits and Signal Processing (NCSP’04), 73–76.
  11. [11]  Pecora, L.M. and Carroll, T.L. (1990), Synchronization in chaotic systems, Phys. Rev. Lett., 64(8), 821–824.
  12. [12]  Zanin, M. and Pisarchik, A.N. (2011), Application of Boolean networks to cryptography and secure communication, Nonlinear Science Letters B: Chaos, Fractal and Synchronization, 1(1) 25–32.
  13. [13]  Zanin, M., Sevilla-Escoboza, R., Jaimes-Reátegui, R., García-Lopez, J.H. and Pisarchik, A.N.(2012), Synchronization attack of chaotic communication systems (submitted).
  14. [14]  García-López, J.H., Jaimes-Reátegui, R., Pisarchik, A.N., Medina-Gutiérrez, C., Jiménez-Godinez, J.C., Murguía-Hernández, A.U. and Valdivia, R. (2005), Novel communication scheme based on chaotic Rössler circuits, J. Phys.: Conf. Ser., 23, 176–184.
  15. [15]  García-López, J.H., Jaimes-Reátegui, R., Chiu-Zarate, R., Lopez-Mancilla, D., Ramirez-Jimenez, R. and A. N. Pisarchik, A.N. (2008), Secure computer communication based on chaotic Rössler oscillators, Open Electric. Electron. Eng. J., 2, 41–44.
  16. [16]  Kocarev, L.J., Halle, K.S., Eckert, K., Chua, L.O. and Parlitz, U. (1992), Experimental demonstration of secure communications via chaotic synchronization, Int. J. Bif. Chaos, 2(3), 709–713.
  17. [17]  Rössler, O.E. (1976), An equation for continuous chaos, Phys. Lett., 57A, 397–398.
  18. [18]  Lakshmanan, M. and Murali, K., Eds. (1995), Chaos in Nonlinear Oscillators: Controlling andSynchronization, World Scientific, Singapore.
  19. [19]  Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., García-Ojalvo, J., Mirasso, C.R.,Pesquera, L. and Shore, K.A. (2005), Chaos-based communications at high bit rates using commercial fibre optic links, Nature, 438, 343–346.
  20. [20]  Pisarchik, A.N. and Ruiz-Oliveras, F.R. (2010), Optical chaotic communication using generalized and complete synchronization,IEEE J. Quantum Electron., 46, 299a–299f.
  21. [21]  Sobhy, M.I. and Shehata, A.R. (2001), Chaotic algorithms for data encryption, http://citeseerx.ist. psu.edu/viewdoc/summary?doi=10.1.1.5.8575