Skip Navigation Links
Discontinuity, Nonlinearity, and Complexity

Dimitry Volchenkov (editor), Dumitru Baleanu (editor)

Dimitry Volchenkov(editor)

Mathematics & Statistics, Texas Tech University, 1108 Memorial Circle, Lubbock, TX 79409, USA

Email: dr.volchenkov@gmail.com

Dumitru Baleanu (editor)

Cankaya University, Ankara, Turkey; Institute of Space Sciences, Magurele-Bucharest, Romania

Email: dumitru.baleanu@gmail.com


Some New Results on Hadamard Neutral Fractional Nonlinear Volterra-Fredholm Integro-Differential Equations

Discontinuity, Nonlinearity, and Complexity 12(4) (2023) 893--903 | DOI:10.5890/DNC.2023.12.013

Ahmed A. Hamoud$^{1}$, Amol D. Khandagale$^{2}$, Rasool Shah$^{3}$, Kirtiwant P. Ghadle$^{2}$

$^{1}$ Department of Mathematics, Taiz University, Taiz-380 015, Yemen

$^{2}$ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

$^{3}$ Department of Mathematics, Abdul Wali Khan University, Mardan (AWKUM), Pakistan

Download Full Text PDF

 

Abstract

In this manuscript, we mainly focus on the existence and uniqueness of solutions for the Hadamard fractional neutral nonlinear Volterra-Fredholm integro-differential equation with infinite delay. We employ Krasnoselskii's fixed point theorem, Arzel\'a-Ascoli theorem and Banach contraction principle to show the existence and uniqueness of solutions of our problem. Lastly, we provide applications for the illustration of the obtained theoretical results.

References

  1. [1]  Kilbas, A., Srivastava, H., and Trujillo, J. (2006), Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier: Amsterdam, The Netherlands.
  2. [2]  Hamoud, A., Mohammed, N., and Ghadle, K. (2022), Existence, uniqueness and stability results for nonlocal fractional nonlinear Volterra-Fredholm integro differential equations, Discontinuity, Nonlinearity, and Complexity, 11(2), 343-352.
  3. [3]  Hamoud, A. and Ghadle, K. (2019), Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, Journal of Applied and Computational Mechanics, 5(1), 58-69.
  4. [4]  Hamoud, A. (2020), Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations, Advances in the Theory of Nonlinear Analysis, 4(4), 321-331.
  5. [5]  Rezapour, S., Mohammadi, H., and Jajarmi, A. (2020), A new mathematical model for Zika virus transmission, Advances in Differential Equations, 2020(1), 1-15.
  6. [6]  Qureshi, S. and Jan, R. (2021), Modeling of measles epidemic with optimized fractional order under Caputo differential operator, Chaos, Solitons \& Fractals, 145, 110766.
  7. [7]  Berhe, H.W., Qureshi, S., and Shaikh, A.A. (2020), Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis, Chaos, Solitons \& Fractals, 131, 109536.
  8. [8]  Almeida, R. (2017), A Caputo fractional derivative of a function with respect to another function, Communications in Nonlinear Science and Numerical Simulation, 44, 460-481.
  9. [9]  Bani Issa, M., Hamoud, A., and Ghadle, K. (2021), Numerical solutions of fuzzy integro-differential equations of the second kind, Journal of Mathematics and Computer Science, 23(1), 67-74.
  10. [10]  Dawood, L., Hamoud, A., and Mohammed, N. (2020), Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations, Journal of Mathematics and Computer Science 21(2), 158-163.
  11. [11]  Furati, K.M., Kassim, M.D., and Tatar, N. (2012), Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers \& Mathematics With Applications, 64, 1616-1626.
  12. [12]  Hamoud, A. and Ghadle, K. (2018), The approximate solutions of fractional Volterra-Fredholm integro-differential equations by using analytical techniques, Problemy Analiza Issues of Analysis, 7(25), 41-58.
  13. [13]  Hamoud, A. and Ghadle, K. (2018), Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-differential equation of the second kind, Tamkang Journal of Mathematics, 49(4), 301-315.
  14. [14]  Hamoud, A., Mohammed, N., and Ghadle, K. (2020), Existence and uniqueness results for Volterra-Fredholm integro differential equations, Advances in the Theory of Nonlinear Analysis, 4(4), 361-372.
  15. [15]  Wu, J. and Liu, Y. (2009), Existence and uniqueness of solutions for the fractional integro-differential equations in Banach spaces, Electron Journal Differential Equations, 2009, 1-8.
  16. [16]  Wu, J. and Liu, Y. (2010), Existence and uniqueness results for fractional integro-differential equations with nonlocal conditions, 2nd IEEE International Conference on Information and Financial Engineering, 2010, 91-94.
  17. [17]  Dabas, J. and Chauhan, A. (2013), Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay, Mathematical and Computer Modelling, 57, 754-763.
  18. [18]  Bao, H. and Cao, J. (2017), Existence of solutions for fractional stochastic impulsive neutral functional differential equations with infinite delay, Advances in Differential Equations, 1, 66.
  19. [19]  Zhao, K., Suo, L., and Liao, Y. (2019), Boundary value problem for a class of fractional integro-differential coupled systems with Hadamard fractional calculus and impulses, Boundary Value Problem, 2019(1), 105.
  20. [20]  Kalamani, P., Baleanu, D., and Arjunan, M. (2018), Local existence for an impulsive fractional neutral integro-differential system with Riemann-Liouville fractional derivatives in a Banach space, Advances in Differential Equations, 2018(1), 416.
  21. [21]  Zhao, K. (2015), Triple positive solutions for two classes of delayed nonlinear fractional FDEs with nonlinear integral boundary value conditions, Boundary Value Problem, 2015(1), 181.
  22. [22]  Zhao, K. (2015), Multiple positive solutions of integral BVPs for high-order nonlinear fractional differential equations with impulses and distributed delays, Dynamical System, 30, 208-223.
  23. [23]  Shah, K., Khan, R., and Baleanu, D. (2019), Study of implicit type coupled system of non-integer order differential equations with anti-periodic boundary conditions, Mathematical Methods in the Applied Sciences, 42(6), 2033-2042.
  24. [24]  Shiri, B. and Baleanu, D. (2019), System of fractional differential algebraic equations with applications, Chaos Solitons Fractals, 120, 203-212.
  25. [25]  Zhou, Y. and Jiao, F. (2010), Existence of mild solutions for fractional neutral evolution equations, Applied and Computational Mathematics, 59, 1063-1077.
  26. [26]  Cicho'n, M. and Salem, H.A.H. (2020), On the lack of equivalence between differential and integral forms of the Caputo-type fractional problems, Journal of Pseudo-Differential Operators and Applications, 11, 1869-1895.
  27. [27]  Hadamard, J. (1892), Essaisur Loe'tude des fonctions donne'es par leur de'veloppment de Taylor, Gauthier-Villars, 8, 101-186.
  28. [28]  Ahmad, B., Alsaedi, A., Ntouyas, S., and Tariboon, J. (2017), Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities, Springer: Berlin/Heidelberg, Germany.
  29. [29]  Butzer, P., Kilbas, A., and Trujillo, J. (2002), Compositions of Hadamard-type fractional integration operators and the semigroup property, Journal of Mathematical Analysis and Applications, 269, 387-400.
  30. [30]  Butzer, P., Kilbas, A., and Trujillo, J. (2002), Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, Journal of Mathematical Analysis and Applications, 269, 1-27.
  31. [31]  Ahmad, B. and Ntouyas, S. (2015), On Hadamard fractional integro-differential boundary value problems, Journal of Mathematical Analysis and Applications, 47, 119-131.
  32. [32]  Ahmad, B. and Ntouyas, S. (2017), Boundary value problems of Hadamard-type fractional differential equations and inclusions with nonlocal conditions, Vietnam Journal of Mathematics, 45, 409-423.
  33. [33]  Salem, A.H. (2019), Hadamard-type fractional calculus in Banach spaces, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113, 987-1006.
  34. [34]  Abdalla, A.M., Salem, H.A.H., and Cicho'n, K. (2020), On positive solutions of a system of equations generated by Hadamard fractional operators, Advances in Differential Equations, 2020(1), 253-267.
  35. [35]  Cicho'n, M. and Salem, H.A.H. (2019), On the solutions of Caputo-Hadamard Pettis-type fractional differential equations, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113, 3031-3053.
  36. [36]  Yukunthorn, W., Suantai, S., Ntouyas, S., and Tariboon, J. (2015), Boundary value problems for impulsive multi-order Hadamard fractional differential equations, Boundary Value Problem, 2015(1), 136-148.
  37. [37]  Abbas, M.I. (2019), On the Hadamard and Riemann-Liouville fractional neutral functional integrodifferential equations with finite delay, Journal of Pseudo-Differential Operators and Applications, 10(2), 505-514.
  38. [38]  Hamoud, A.A., Sharif, A.A., and Ghadle, K.P. (2021), Existence, uniqueness and stability results of fractional Volterra-Fredholm integro differential equations of $\psi$-Hilfer type, Discontinuity, Nonlinearity, and Complexity, 10(3), 535-545.
  39. [39]  Sharif, A.A. and Hamoud, A.A. (2022), On $\psi$-Caputo fractional nonlinear Volterra-Fredholm integro-differential equations, Discontinuity, Nonlinearity, and Complexity, 11(1), 97-106.
  40. [40]  Aljoudi, S., Ahmad, B., Nieto, J., and Alsaedi, A. (2016), A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions, Chaos, Solitons and Fractals, 91, 39-46.
  41. [41]  Guo, D. and Lakshmikantham, V. (1988), Nonlinear Problems in Abstract Cone, Academic Press: Orlando, FL, USA.
  42. [42]  Granas, A. and Dugundji, J. (2003), Fixed Point Theory, Springer: New York, NY, USA.