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	Abstract (Arial, 10pt,bold)
(Times, 10pt)In this paper, analytical routines of period-1 motions to chaos in the Duffing oscillator with a twin-potential well are investigated through the generalized harmonic balance method. The analytical solutions of period-m motions are presented by the Fourier series, and the corresponding Hopf bifurcation of periodic motions leads to new periodic motions with period-doubling. Three analytical routes of asymmetric period-1 motions to chaos are presented comprehensively. To verify approximate, analytical periodic solutions, numerical simulations are carried out. In the analytical routes, the unstable periodic motions are presented, and such analytical routes with unstable periodic motions can help one find unstable chaos. Such unstable chaos cannot be obtained simply via the time going to infinity (i.e.,
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1. Introduction
Milling is a machining operation whose high cutting efficiency is facilitated through the simple deployment of small tools of finite number of cutting edges at high spindle speed.  When immersion rate is low and the time spent cutting is only a small fraction of the spindle period, interrupted cutting would ensure as a result.  The regenerative effect could also be prominent, where the cutting force depends on the current as well as the delayed tool positions.  In the stability analysis performed using a linear high speed milling model, Davies et al [1] showed that the fixed point of the model can lose its stability through either Neimar-Sacker bifurcation or period-doubling bifurcation.  Szalai et al. [2] further established that both bifurcations were subcritical using a nonlinear discrete model.  They also demonstrated that a stable cutting can suddenly turn into chatter – a pronounced dynamic effect characterized by large tool vibration amplitude or frequency oscillation different from the spindle speed.   Such a negative effect induces detrimental aperiodic errors such as waviness on the workpiece surface, inaccurate dimensions and excessive tool wear, among others [3].  

The onset of chatter has been investigated both analytically and numerically.  Dynamic milling equations were transformed into linear maps and the eigenvalues of the transition matrix in the complex plane were used to predict stability [1,2].  Using numerical integration, stability was predicted by gradually increasing the axial depth-of-cut until instability occurred [3].  However, each method has its own shortcoming.  Established methodologies use eigenvalues of the approximated transition matrix to determine the stability bound of the system.  In route-to-chaos process, the way these eigenvalues leaves the unit circle in the complex plane is used to identify the type of bifurcation.  But as long as the high order nonlinear terms are omitted and the solution is projected into orthogonal eigenvectors, the response is obscured and cannot be considered as a genuine representation of the nonlinear system.  In numerical study, the stability of the system is decided by the emergence of additional frequencies in the corresponding Fourier spectrum.  As a mathematical averaging scheme in the infinite integral sense, Fourier transform generates spectra that are misinterpreted and fictitious frequency components that are non-physical [4].  Thus, stability determined by Fourier spectra would necessarily be erroneous.  It has been demonstrated that to properly characterize route-to-chaos process, both time and frequency responses need be considered [5].  The concept of instantaneous frequency [6] is adopted in the paper to help manifest the dependency of frequency on time – an attribute common of all nonlinear responses including milling chatter.  

In general, contemporary control theories are developed either in the frequency domain or time domain alone.  When a controller is designed in the frequency domain, the equation of motion is converted into a corresponding transfer function.  Frequency response design methods, such as Bode plot and root locus, can be used to help develop frequency domain based controllers [7].  When a controller is designed in the time domain, the differential equations of the system are described as a state space model using state variables.  Once controllability and observability are established, time domain control laws can then be applied.  Controllers of either construct can only be applied exclusively either in the frequency or time domain, and they have been shown to be suitable for linear, stationary systems.  However, for a nonlinear, nonstationary system, when undergoing bifurcation to eventual chaos, its time response is no longer periodic and broadband frequency spectrum emerges.  Controllers designed in the time domain confine the time error while unable to suppress the expanding spectrum.  On the other hand, controllers designed in the frequency domain constrain the frequency bandwidth while losing control over time domain error.  Neither frequency domain nor time domain based controllers are sufficient to handle bifurcation and chaotic response.  
In sections that follow, a high-speed, low immersion milling model is explored without linearization so as to retain the inherent physical attributes of the nonlinear system.  Because neither linearization nor eigenvectors are attempted, tools commonly adopted for identifying various types of bifurcations are no longer applicable.  As a viable alternative, instantaneous frequency is deployed to characterize the route-to-chaos process in the simultaneous time-frequency domain.  The novel wavelet-based active controller first introduced in Ref. [5] along with its fundamental features that enable simultaneous time-frequency control is also utilized.  The wavelet-based active controller owes its inspiration to active noise control [8], though of a different objective.  While active noise controls serve to minimize acoustic noise, the wavelet-based active controller is configured to mitigate the deterioration of the aperiodic response in both time and frequency domains when the system undergoes dynamic instability including bifurcation and chaos.  The most prominent property of the controller is its applicability to nonlinear systems whose responses are non-autonomous and non-stationary.  Such a powerful attribute is made possible by incorporating adaptive filters, so that system identification can be executed in real-time and control law can be timely modified according to the changing circumstances.  Components of the wavelet-based active controller, including discrete wavelet transform (DWT) in the time domain, wavelet-based finite impulse response (FIR) filter, and Filtered-x least mean square (FXLMS) algorithm, will be considered later in the presentation. 
2. High speed low immersion milling model 
The one-degree-of-freedom milling model presented in Ref. [2] that governs the tool motion of the cutting operation at high speed is adopted, as shown in Fig. 1.  The tool has even number of edges and operates at a constant angular velocity, Ω.  Its mass, damping coefficient and spring coefficient are denoted as m, c, and k, respectively.  The feed rate is provided by the workpiece velocity V0.  The dynamic milling equation that corresponds to Fig. 1(b) is
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Fig. 1 High speed milling model [2]
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where x(t) is the tool tip vertical position, 
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 is the undamped natural frequency, and  is the relative damping factor.  The nonlinear cutting force, Fc , is derived from the empirical three-quarter rule [2] as a function of the workpiece thickness, h(t), 
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where K is an empirical parameter and w is the chip width.  h(t) equals the feed per cutting period h0 plus the previous tool tip position, x(t-τ), and minus the current tool tip position, x(t), 
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with d(t) being a delta function defined as
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The cutting force is applied to the system only when the tool edge physically engages the workpiece (
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).  After the tool edge disengages the workpiece, the tool starts free vibration until the next edge arrives (
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).  As is noted in [2], the time spent on cutting is relatively small compared to the time spent on free vibration.
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